IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2019i1p283-d303661.html
   My bibliography  Save this article

A Comparative Study of Biogas Production from Cattle Slaughterhouse Wastewater Using Conventional and Modified Upflow Anaerobic Sludge Blanket (UASB) Reactors

Author

Listed:
  • Mohammed Ali Musa

    (Department of Civil Engineering, Faculty of Engineering, University Putra Malaysia, Serdang 43400, Malaysia
    Department of Civil and Water Resources Engineering, University of Maiduguri, Maiduguri P.M.B. 1069, Nigeria)

  • Syazwani Idrus

    (Department of Civil Engineering, Faculty of Engineering, University Putra Malaysia, Serdang 43400, Malaysia)

  • Mohd Razif Harun

    (Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Malaysia)

  • Tuan Farhana Tuan Mohd Marzuki

    (Department of Civil Engineering, Faculty of Engineering, University Putra Malaysia, Serdang 43400, Malaysia)

  • Abdul Malek Abdul Wahab

    (Faculty of Mechanical Engineering, Universiti Teknologi Mara, Shah Alam 40450, Malaysia)

Abstract

Cattle slaughterhouses generate wastewater that is rich in organic contaminant and nutrients, which is considered as high strength wastewater with a high potential for energy recovery. Work was undertaken to evaluate the efficiency of the 12 L laboratory scale conventional and a modified upflow anaerobic sludge blanket (UASB) reactors (conventional, R1 and modified, R2), for treatment of cattle slaughterhouse wastewater (CSWW) under mesophilic condition (35 ± 1 °C). Both reactors were acclimated with synthetic wastewater for 30 days, then continuous study with real CSWW proceeds. The reactors were subjected to the same loading condition of OLR, starting from 1.75, 3, 5 10, 14, and 16 g L −1 d −1 , corresponding to 3.5, 6, 10, 20, 28, and 32 g COD/L at constant hydraulic retention time (HRT) of 24 h. The performance of the R1 reactor drastically dropped at OLR 10 g L −1 d −1 , and this significantly affected the subsequent stages. The steady-state performance of the R2 reactor under the same loading condition as the R1 reactor revealed a high COD removal efficiency of 94% and biogas and methane productions were 27 L/d and 89%. The SMP was 0.21 LCH 4 /gCOD added, whereas the NH 3 -N alkalinity ratio stood at 651 mg/L and 0.2. SEM showed that the R2 reactor was dominated by Methanosarcina bacterial species, while the R1 reactor revealed a disturb sludge with insufficient microbial biomass.

Suggested Citation

  • Mohammed Ali Musa & Syazwani Idrus & Mohd Razif Harun & Tuan Farhana Tuan Mohd Marzuki & Abdul Malek Abdul Wahab, 2019. "A Comparative Study of Biogas Production from Cattle Slaughterhouse Wastewater Using Conventional and Modified Upflow Anaerobic Sludge Blanket (UASB) Reactors," IJERPH, MDPI, vol. 17(1), pages 1-19, December.
  • Handle: RePEc:gam:jijerp:v:17:y:2019:i:1:p:283-:d:303661
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/1/283/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/1/283/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alessandro Chiumenti & Andrea Pezzuolo & Davide Boscaro & Francesco da Borso, 2019. "Exploitation of Mowed Grass from Green Areas by Means of Anaerobic Digestion: Effects of Grass Conservation Methods (Drying and Ensiling) on Biogas and Biomethane Yield," Energies, MDPI, vol. 12(17), pages 1-11, August.
    2. Shalinee Naidoo & Ademola O. Olaniran, 2013. "Treated Wastewater Effluent as a Source of Microbial Pollution of Surface Water Resources," IJERPH, MDPI, vol. 11(1), pages 1-22, December.
    3. A. C. Marcos & A. Al-Kassir & Francisco Cuadros & Talal Yusaf, 2017. "Treatment of Slaughterhouse Waste Water Mixed with Serum from Lacteal Industry of Extremadura in Spain to Produce Clean Energy," Energies, MDPI, vol. 10(6), pages 1-15, May.
    4. Mohammed Ali Musa & Syazwani Idrus & Che Man Hasfalina & Nik Norsyahariati Nik Daud, 2018. "Effect of Organic Loading Rate on Anaerobic Digestion Performance of Mesophilic (UASB) Reactor Using Cattle Slaughterhouse Wastewater as Substrate," IJERPH, MDPI, vol. 15(10), pages 1-19, October.
    5. Martinez, E. & Marcos, A. & Al-Kassir, A. & Jaramillo, M.A. & Mohamad, A.A., 2012. "Mathematical model of a laboratory-scale plant for slaughterhouse effluents biodigestion for biogas production," Applied Energy, Elsevier, vol. 95(C), pages 210-219.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stephen Tangwe & Patrick Mukumba & Golden Makaka, 2022. "Comparison of the Prediction Accuracy of Total Viable Bacteria Counts in a Batch Balloon Digester Charged with Cow Manure: Multiple Linear Regression and Non-Linear Regression Models," Energies, MDPI, vol. 15(19), pages 1-23, October.
    2. Mohammed Ali Musa & Syazwani Idrus & Che Man Hasfalina & Nik Norsyahariati Nik Daud, 2018. "Effect of Organic Loading Rate on Anaerobic Digestion Performance of Mesophilic (UASB) Reactor Using Cattle Slaughterhouse Wastewater as Substrate," IJERPH, MDPI, vol. 15(10), pages 1-19, October.
    3. Padi, Richard Kingsley & Douglas, Sean & Murphy, Fionnuala, 2023. "Techno-economic potentials of integrating decentralised biomethane production systems into existing natural gas grids," Energy, Elsevier, vol. 283(C).
    4. Ortner, Markus & Wöss, David & Schumergruber, Alexander & Pröll, Tobias & Fuchs, Werner, 2015. "Energy self-supply of large abattoir by sustainable waste utilization based on anaerobic mono-digestion," Applied Energy, Elsevier, vol. 143(C), pages 460-471.
    5. Alessia Cogato & Francesco Marinello & Andrea Pezzuolo, 2023. "Soil Footprint and Land-Use Change to Clean Energy Production: Implications for Solar and Wind Power Plants," Land, MDPI, vol. 12(10), pages 1-10, September.
    6. Lübken, Manfred & Koch, Konrad & Gehring, Tito & Horn, Harald & Wichern, Marc, 2015. "Parameter estimation and long-term process simulation of a biogas reactor operated under trace elements limitation," Applied Energy, Elsevier, vol. 142(C), pages 352-360.
    7. Sakulrat Sutthiprapa & Sirintornthep Towprayoon & Chart Chiemchaisri & Pawinee Chaiprasert & Komsilp Wangyao, 2024. "Optimizing an Anaerobic Hybrid Reactor Series for Effective High-Strength Fresh Leachate Treatment and Biogas Generation," Sustainability, MDPI, vol. 16(7), pages 1-13, April.
    8. Hind Barghash & Zuhoor AlRashdi & Kenneth E. Okedu & Peter Desmond, 2022. "Life-Cycle Assessment Study for Bio-Hydrogen Gas Production from Sewage Treatment Plants Using Solar PVs," Energies, MDPI, vol. 15(21), pages 1-17, October.
    9. Yang, Jin & Chen, Bin, 2014. "Emergy analysis of a biogas-linked agricultural system in rural China – A case study in Gongcheng Yao Autonomous County," Applied Energy, Elsevier, vol. 118(C), pages 173-182.
    10. Jurado, E. & Antonopoulou, G. & Lyberatos, G. & Gavala, H.N. & Skiadas, I.V., 2016. "Continuous anaerobic digestion of swine manure: ADM1-based modelling and effect of addition of swine manure fibers pretreated with aqueous ammonia soaking," Applied Energy, Elsevier, vol. 172(C), pages 190-198.
    11. Vanmarcke, Hanne & Tuytschaever, Tessa & Everaert, Bert & Cuypere, Tim De & Sampers, Imca, 2024. "Impact of using stored treated municipal wastewater for irrigation on the microbial quality and safety of vegetable crops," Agricultural Water Management, Elsevier, vol. 297(C).
    12. Tasnia Hassan Nazifa & Noori M. Cata Saady & Carlos Bazan & Sohrab Zendehboudi & Adnan Aftab & Talib M. Albayati, 2021. "Anaerobic Digestion of Blood from Slaughtered Livestock: A Review," Energies, MDPI, vol. 14(18), pages 1-26, September.
    13. Yu, Liang & Ma, Jingwei & Frear, Craig & Zhao, Quanbao & Dillon, Robert & Li, Xiujin & Chen, Shulin, 2013. "Multiphase modeling of settling and suspension in anaerobic digester," Applied Energy, Elsevier, vol. 111(C), pages 28-39.
    14. Sean O’Connor & Ehiaze Ehimen & Suresh C. Pillai & Gary Lyons & John Bartlett, 2020. "Economic and Environmental Analysis of Small-Scale Anaerobic Digestion Plants on Irish Dairy Farms," Energies, MDPI, vol. 13(3), pages 1-20, February.
    15. Łukasz Jałowiecki & Jakub Hubeny & Monika Harnisz & Grażyna Płaza, 2021. "Seasonal and Technological Shifts of the WHO Priority Multi-Resistant Pathogens in Municipal Wastewater Treatment Plant and Its Receiving Surface Water: A Case Study," IJERPH, MDPI, vol. 19(1), pages 1-13, December.
    16. Derseh Yilie Limeneh & Tamrat Tesfaye & Million Ayele & Nuredin Muhammed Husien & Eyasu Ferede & Adane Haile & Wassie Mengie & Amare Abuhay & Gemeda Gebino Gelebo & Magdi Gibril & Fangong Kong, 2022. "A Comprehensive Review on Utilization of Slaughterhouse By-Product: Current Status and Prospect," Sustainability, MDPI, vol. 14(11), pages 1-20, May.
    17. McCabe, Bernadette K. & Hamawand, Ihsan & Harris, Peter & Baillie, Craig & Yusaf, Talal, 2014. "A case study for biogas generation from covered anaerobic ponds treating abattoir wastewater: Investigation of pond performance and potential biogas production," Applied Energy, Elsevier, vol. 114(C), pages 798-808.
    18. Essam M. Janahi & Sakina Mustafa & Saba F. D. Parkar & Humood A. Naser & Zaki M. Eisa, 2020. "Detection of Enteric Viruses and Bacterial Indicators in a Sewage Treatment Center and Shallow Water Bay," IJERPH, MDPI, vol. 17(18), pages 1-13, September.
    19. Villa, Raffaella & Ortega Rodriguez, Lelia & Fenech, Cecilia & Anika, Ogemdi Chinwendu, 2020. "Ensiling for anaerobic digestion: A review of key considerations to maximise methane yields," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    20. Jensen, P.D. & Sullivan, T. & Carney, C. & Batstone, D.J., 2014. "Analysis of the potential to recover energy and nutrient resources from cattle slaughterhouses in Australia by employing anaerobic digestion," Applied Energy, Elsevier, vol. 136(C), pages 23-31.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2019:i:1:p:283-:d:303661. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.