IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i7p3076-d1371531.html
   My bibliography  Save this article

Optimizing an Anaerobic Hybrid Reactor Series for Effective High-Strength Fresh Leachate Treatment and Biogas Generation

Author

Listed:
  • Sakulrat Sutthiprapa

    (The Joint Graduate School of Energy and Environment, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand
    Center of Excellence on Energy Technology and Environment (CEE), Ministry of Higher Education, Science, Research and Innovation (MHESI), Bangkok 10140, Thailand)

  • Sirintornthep Towprayoon

    (The Joint Graduate School of Energy and Environment, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand
    Center of Excellence on Energy Technology and Environment (CEE), Ministry of Higher Education, Science, Research and Innovation (MHESI), Bangkok 10140, Thailand)

  • Chart Chiemchaisri

    (Department of Environmental Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand)

  • Pawinee Chaiprasert

    (Biotechnology Program, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkok 10150, Thailand)

  • Komsilp Wangyao

    (The Joint Graduate School of Energy and Environment, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand
    Center of Excellence on Energy Technology and Environment (CEE), Ministry of Higher Education, Science, Research and Innovation (MHESI), Bangkok 10140, Thailand)

Abstract

Treating high-strength fresh leachate is challenging and of great interest due to the inherent variability in its physical and chemical characteristics. This research aims to enhance the efficiency of the anaerobic hybrid reactor (AHR) series in treating high-strength fresh leachate and achieving biogas generation from fresh leachate at ambient temperatures. The AHR series used consists of two serially connected reactors termed the first anaerobic hybrid reactor (AHR-1) and the secondary anaerobic hybrid reactor (AHR-2). AHR-1 treated high-concentration fresh leachate with an organic loading rate (OLR) between 5 and 20 kgCOD/m 3 ·d. AHR-2 treated the effluent from the first tank and removed organic matter from the system. The experiment was conducted for 210 days, showing that an OLR of 10 kgCOD/m 3 ·d resulted in the most suitable COD removal efficiency, ranging from 82 to 91%. The most suitable OLR for biogas production was 15 kgCOD/m 3 ·d. The AHR series proved to be an efficient system for treating high-strength fresh leachate and generating biogas, making it applicable to leachate treatment facilities at waste transfer stations and landfill sites. Treating leachate and utilizing it as a renewable energy source using the AHR series presents a practical and efficient waste management approach. High-strength leachate can be effectively treated with the AHR series; such methods may be integrated into industries treating leachates with high COD values.

Suggested Citation

  • Sakulrat Sutthiprapa & Sirintornthep Towprayoon & Chart Chiemchaisri & Pawinee Chaiprasert & Komsilp Wangyao, 2024. "Optimizing an Anaerobic Hybrid Reactor Series for Effective High-Strength Fresh Leachate Treatment and Biogas Generation," Sustainability, MDPI, vol. 16(7), pages 1-13, April.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:7:p:3076-:d:1371531
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/7/3076/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/7/3076/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aarthi Aishwarya Devendran & Brijesh Mainali & Dilip Khatiwada & Farzin Golzar & Krushna Mahapatra & Camila H. Toigo, 2023. "Optimization of Municipal Waste Streams in Achieving Urban Circularity in the City of Curitiba, Brazil," Sustainability, MDPI, vol. 15(4), pages 1-18, February.
    2. Mohammed Ali Musa & Syazwani Idrus & Che Man Hasfalina & Nik Norsyahariati Nik Daud, 2018. "Effect of Organic Loading Rate on Anaerobic Digestion Performance of Mesophilic (UASB) Reactor Using Cattle Slaughterhouse Wastewater as Substrate," IJERPH, MDPI, vol. 15(10), pages 1-19, October.
    3. Maria Cristina Collivignarelli & Alessandro Abbà & Francesca Maria Caccamo & Silvia Calatroni & Vincenzo Torretta & Ioannis A. Katsoyiannis & Marco Carnevale Miino & Elena Cristina Rada, 2021. "Applications of Up-Flow Anaerobic Sludge Blanket (UASB) and Characteristics of Its Microbial Community: A Review of Bibliometric Trend and Recent Findings," IJERPH, MDPI, vol. 18(19), pages 1-25, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. German Smetana & Anna Grosser, 2024. "The Application of an Upflow Anaerobic Sludge Blanket Reactor in the Treatment of Brewery and Dairy Wastewater: A Critical Review," Energies, MDPI, vol. 17(6), pages 1-30, March.
    2. Muhammad Khalish Mohammad Ilias & Md. Sohrab Hossain & Rahmat Ngteni & Adel Al-Gheethi & Harlina Ahmad & Fatehah Mohd Omar & Mu. Naushad & Sadanand Pandey, 2021. "Environmental Remediation Potential of Ferrous Sulfate Waste as an Eco-Friendly Coagulant for the Removal of NH 3 -N and COD from the Rubber Processing Effluent," IJERPH, MDPI, vol. 18(23), pages 1-16, November.
    3. Mohammed Ali Musa & Syazwani Idrus & Mohd Razif Harun & Tuan Farhana Tuan Mohd Marzuki & Abdul Malek Abdul Wahab, 2019. "A Comparative Study of Biogas Production from Cattle Slaughterhouse Wastewater Using Conventional and Modified Upflow Anaerobic Sludge Blanket (UASB) Reactors," IJERPH, MDPI, vol. 17(1), pages 1-19, December.
    4. Seung Gu Shin & Su In Kim & Seokhwan Hwang, 2022. "Startup of Demo-Scale Anaerobic Digestion Plant Treating Food Waste Leachate: Process Instability and Recovery," IJERPH, MDPI, vol. 19(11), pages 1-10, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:7:p:3076-:d:1371531. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.