IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v142y2015icp352-360.html
   My bibliography  Save this article

Parameter estimation and long-term process simulation of a biogas reactor operated under trace elements limitation

Author

Listed:
  • Lübken, Manfred
  • Koch, Konrad
  • Gehring, Tito
  • Horn, Harald
  • Wichern, Marc

Abstract

The Anaerobic Digestion Model No. 1 (ADM1) was modified to describe the long-term process stability of a two-stage agricultural biogas system operated for 494days with a mono-substrate. The ADM1 model fraction for carbohydrates was divided into a slowly and readily degradable part. Significant different hydrolysis rate constants were found for proteins and single fractions of carbohydrates in batch experiments. Degradation of starch, xylan (hemicellulose), cellulose and zein (protein) were modeled with first order hydrolysis rate coefficients of 1.20d−1, 0.70d−1, 0.18d−1 and 0.30d−1, respectively. While the hydrolysis rate coefficients found in batch experiments could be used for predicting continuous process data, the statistically calculated confidence regions (nonlinear parameter estimation) showed that the upper limits were unbounded. Single discrepancies between measured and modeled process data of the two-stage pilot system could be explained by the lack of bioavailability of trace elements. Addition of iron, as Fe(III)Cl3, allowed stable process conditions for an organic loading rate (OLR) up to 2.5gVSL−1d−1. Additional supplement of trace elements was necessary for process operation at OLRs above 2.5gVSL−1d−1.

Suggested Citation

  • Lübken, Manfred & Koch, Konrad & Gehring, Tito & Horn, Harald & Wichern, Marc, 2015. "Parameter estimation and long-term process simulation of a biogas reactor operated under trace elements limitation," Applied Energy, Elsevier, vol. 142(C), pages 352-360.
  • Handle: RePEc:eee:appene:v:142:y:2015:i:c:p:352-360
    DOI: 10.1016/j.apenergy.2015.01.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915000203
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.01.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Browne, James D. & Allen, Eoin & Murphy, Jerry D., 2014. "Assessing the variability in biomethane production from the organic fraction of municipal solid waste in batch and continuous operation," Applied Energy, Elsevier, vol. 128(C), pages 307-314.
    2. Zhen, Guangyin & Lu, Xueqin & Li, Yu-You & Zhao, Youcai, 2014. "Combined electrical-alkali pretreatment to increase the anaerobic hydrolysis rate of waste activated sludge during anaerobic digestion," Applied Energy, Elsevier, vol. 128(C), pages 93-102.
    3. Ortner, Markus & Rachbauer, Lydia & Somitsch, Walter & Fuchs, Werner, 2014. "Can bioavailability of trace nutrients be measured in anaerobic digestion?," Applied Energy, Elsevier, vol. 126(C), pages 190-198.
    4. Koch, Konrad & Drewes, Jörg E., 2014. "Alternative approach to estimate the hydrolysis rate constant of particulate material from batch data," Applied Energy, Elsevier, vol. 120(C), pages 11-15.
    5. Kaparaju, Prasad & Serrano, María & Angelidaki, Irini, 2010. "Optimization of biogas production from wheat straw stillage in UASB reactor," Applied Energy, Elsevier, vol. 87(12), pages 3779-3783, December.
    6. Zamalloa, Carlos & Boon, Nico & Verstraete, Willy, 2012. "Anaerobic digestibility of Scenedesmus obliquus and Phaeodactylum tricornutum under mesophilic and thermophilic conditions," Applied Energy, Elsevier, vol. 92(C), pages 733-738.
    7. Sambusiti, C. & Ficara, E. & Malpei, F. & Steyer, J.P. & Carrère, H., 2013. "Effect of sodium hydroxide pretreatment on physical, chemical characteristics and methane production of five varieties of sorghum," Energy, Elsevier, vol. 55(C), pages 449-456.
    8. Mendez, Lara & Mahdy, Ahmed & Ballesteros, Mercedes & González-Fernández, Cristina, 2014. "Methane production of thermally pretreated Chlorella vulgaris and Scenedesmus sp. biomass at increasing biomass loads," Applied Energy, Elsevier, vol. 129(C), pages 238-242.
    9. Koch, Konrad & Helmreich, Brigitte & Drewes, Jörg E., 2015. "Co-digestion of food waste in municipal wastewater treatment plants: Effect of different mixtures on methane yield and hydrolysis rate constant," Applied Energy, Elsevier, vol. 137(C), pages 250-255.
    10. Thamsiriroj, T. & Nizami, A.S. & Murphy, J.D., 2012. "Why does mono-digestion of grass silage fail in long term operation?," Applied Energy, Elsevier, vol. 95(C), pages 64-76.
    11. Martinez, E. & Marcos, A. & Al-Kassir, A. & Jaramillo, M.A. & Mohamad, A.A., 2012. "Mathematical model of a laboratory-scale plant for slaughterhouse effluents biodigestion for biogas production," Applied Energy, Elsevier, vol. 95(C), pages 210-219.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hajizadeh, Abdollah & Mohamadi-Baghmolaei, Mohamad & Cata Saady, Noori M. & Zendehboudi, Sohrab, 2022. "Hydrogen production from biomass through integration of anaerobic digestion and biogas dry reforming," Applied Energy, Elsevier, vol. 309(C).
    2. Bułkowska, K. & Białobrzewski, I. & Klimiuk, E. & Pokój, T., 2018. "Kinetic parameters of volatile fatty acids uptake in the ADM1 as key factors for modeling co-digestion of silages with pig manure, thin stillage and glycerine phase," Renewable Energy, Elsevier, vol. 126(C), pages 163-176.
    3. Begum, Sameena & Ahuja, Shruti & Anupoju, Gangagni Rao & Kuruti, Kranti & Juntupally, Sudharshan & Gandu, Bharath & Ahuja, D.K., 2017. "Process intensification with inline pre and post processing mechanism for valorization of poultry litter through high rate biomethanation technology: A full scale experience," Renewable Energy, Elsevier, vol. 114(PB), pages 428-436.
    4. Tsapekos, P. & Kougias, P.G. & Treu, L. & Campanaro, S. & Angelidaki, I., 2017. "Process performance and comparative metagenomic analysis during co-digestion of manure and lignocellulosic biomass for biogas production," Applied Energy, Elsevier, vol. 185(P1), pages 126-135.
    5. Tsapekos, Panagiotis & Lovato, Giovanna & Domingues Rodrigues, José Alberto & Alvarado-Morales, Merlin, 2024. "Amendments to model frameworks to optimize the anaerobic digestion and support the green transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    6. Dandikas, Vasilis & Heuwinkel, Hauke & Lichti, Fabian & Eckl, Thomas & Drewes, Jörg E. & Koch, Konrad, 2018. "Correlation between hydrolysis rate constant and chemical composition of energy crops," Renewable Energy, Elsevier, vol. 118(C), pages 34-42.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kavitha, S. & Banu, J. Rajesh & Priya, A. Arul & Uan, Do Khac & Yeom, Ick Tae, 2017. "Liquefaction of food waste and its impacts on anaerobic biodegradability, energy ratio and economic feasibility," Applied Energy, Elsevier, vol. 208(C), pages 228-238.
    2. Koch, Konrad & Helmreich, Brigitte & Drewes, Jörg E., 2015. "Co-digestion of food waste in municipal wastewater treatment plants: Effect of different mixtures on methane yield and hydrolysis rate constant," Applied Energy, Elsevier, vol. 137(C), pages 250-255.
    3. Ebenezer, A. Vimala & Arulazhagan, P. & Adish Kumar, S. & Yeom, Ick-Tae & Rajesh Banu, J., 2015. "Effect of deflocculation on the efficiency of low-energy microwave pretreatment and anaerobic biodegradation of waste activated sludge," Applied Energy, Elsevier, vol. 145(C), pages 104-110.
    4. Ortner, Markus & Wöss, David & Schumergruber, Alexander & Pröll, Tobias & Fuchs, Werner, 2015. "Energy self-supply of large abattoir by sustainable waste utilization based on anaerobic mono-digestion," Applied Energy, Elsevier, vol. 143(C), pages 460-471.
    5. Li, Yangyang & Jin, Yiying & Li, Hailong & Borrion, Aiduan & Yu, Zhixin & Li, Jinhui, 2018. "Kinetic studies on organic degradation and its impacts on improving methane production during anaerobic digestion of food waste," Applied Energy, Elsevier, vol. 213(C), pages 136-147.
    6. Hassan, Muhammad & Zhao, Chao & Ding, Weimin, 2020. "Enhanced methane generation and biodegradation efficiencies of goose manure by thermal-sonication pretreatment and organic loading management in CSTR," Energy, Elsevier, vol. 198(C).
    7. Zabed, Hossain M. & Akter, Suely & Yun, Junhua & Zhang, Guoyan & Zhang, Yufei & Qi, Xianghui, 2020. "Biogas from microalgae: Technologies, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    8. Janke, Leandro & Weinrich, Sören & Leite, Athaydes F. & Sträuber, Heike & Nikolausz, Marcell & Nelles, Michael & Stinner, Walter, 2019. "Pre-treatment of filter cake for anaerobic digestion in sugarcane biorefineries: Assessment of batch versus semi-continuous experiments," Renewable Energy, Elsevier, vol. 143(C), pages 1416-1426.
    9. Li, Yangyang & Jin, Yiying & Li, Jinhui & Li, Hailong & Yu, Zhixin, 2016. "Effects of thermal pretreatment on the biomethane yield and hydrolysis rate of kitchen waste," Applied Energy, Elsevier, vol. 172(C), pages 47-58.
    10. Yu, Liang & Ma, Jingwei & Frear, Craig & Zhao, Quanbao & Dillon, Robert & Li, Xiujin & Chen, Shulin, 2013. "Multiphase modeling of settling and suspension in anaerobic digester," Applied Energy, Elsevier, vol. 111(C), pages 28-39.
    11. Li, Wei & Guo, Jianbin & Cheng, Huicai & Wang, Wei & Dong, Renjie, 2017. "Two-phase anaerobic digestion of municipal solid wastes enhanced by hydrothermal pretreatment: Viability, performance and microbial community evaluation," Applied Energy, Elsevier, vol. 189(C), pages 613-622.
    12. Bohutskyi, Pavlo & Chow, Steven & Ketter, Ben & Betenbaugh, Michael J. & Bouwer, Edward J., 2015. "Prospects for methane production and nutrient recycling from lipid extracted residues and whole Nannochloropsis salina using anaerobic digestion," Applied Energy, Elsevier, vol. 154(C), pages 718-731.
    13. Voelklein, M.A. & O' Shea, R. & Jacob, A. & Murphy, J.D., 2017. "Role of trace elements in single and two-stage digestion of food waste at high organic loading rates," Energy, Elsevier, vol. 121(C), pages 185-192.
    14. Li, Yangyang & Jin, Yiying & Li, Jinhui & Li, Hailong & Yu, Zhixin, 2016. "Effects of pungency degree on mesophilic anaerobic digestion of kitchen waste," Applied Energy, Elsevier, vol. 181(C), pages 171-178.
    15. Luz, Fábio Codignole & Cordiner, Stefano & Manni, Alessandro & Mulone, Vincenzo & Rocco, Vittorio, 2017. "Anaerobic digestion of coffee grounds soluble fraction at laboratory scale: Evaluation of the biomethane potential," Applied Energy, Elsevier, vol. 207(C), pages 166-175.
    16. Sohoo, Ihsanullah & Ritzkowski, Marco & Heerenklage, Jörn & Kuchta, Kerstin, 2021. "Biochemical methane potential assessment of municipal solid waste generated in Asian cities: A case study of Karachi, Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    17. O’Shea, Richard & Kilgallon, Ian & Wall, David & Murphy, Jerry D., 2016. "Quantification and location of a renewable gas industry based on digestion of wastes in Ireland," Applied Energy, Elsevier, vol. 175(C), pages 229-239.
    18. Stephen Tangwe & Patrick Mukumba & Golden Makaka, 2022. "Comparison of the Prediction Accuracy of Total Viable Bacteria Counts in a Batch Balloon Digester Charged with Cow Manure: Multiple Linear Regression and Non-Linear Regression Models," Energies, MDPI, vol. 15(19), pages 1-23, October.
    19. Manzone, Marco & Calvo, Angela, 2016. "Energy and CO2 analysis of poplar and maize crops for biomass production in north Italy," Renewable Energy, Elsevier, vol. 86(C), pages 675-681.
    20. Dandikas, Vasilis & Heuwinkel, Hauke & Lichti, Fabian & Eckl, Thomas & Drewes, Jörg E. & Koch, Konrad, 2018. "Correlation between hydrolysis rate constant and chemical composition of energy crops," Renewable Energy, Elsevier, vol. 118(C), pages 34-42.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:142:y:2015:i:c:p:352-360. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.