IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i11p6469-d823834.html
   My bibliography  Save this article

A Comprehensive Review on Utilization of Slaughterhouse By-Product: Current Status and Prospect

Author

Listed:
  • Derseh Yilie Limeneh

    (Biorefinery Research Center, Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar P.O. Box 1037, Ethiopia)

  • Tamrat Tesfaye

    (Biorefinery Research Center, Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar P.O. Box 1037, Ethiopia
    State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Jinan 250316, China)

  • Million Ayele

    (Biorefinery Research Center, Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar P.O. Box 1037, Ethiopia)

  • Nuredin Muhammed Husien

    (Biorefinery Research Center, Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar P.O. Box 1037, Ethiopia)

  • Eyasu Ferede

    (Biorefinery Research Center, Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar P.O. Box 1037, Ethiopia)

  • Adane Haile

    (Biorefinery Research Center, Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar P.O. Box 1037, Ethiopia)

  • Wassie Mengie

    (Biorefinery Research Center, Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar P.O. Box 1037, Ethiopia)

  • Amare Abuhay

    (Biorefinery Research Center, Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar P.O. Box 1037, Ethiopia)

  • Gemeda Gebino Gelebo

    (Biorefinery Research Center, Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar P.O. Box 1037, Ethiopia)

  • Magdi Gibril

    (State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Jinan 250316, China)

  • Fangong Kong

    (State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Jinan 250316, China)

Abstract

The meat processing industry produces a huge quantity of by-products, approximately 150 million tonnes per year. The live weight of the animals is distinguished as edible, inedible, and discardable by-products, with the discardable parts equating to 66%, 52%, and 80% of the overall live weight of cattle, lamb, and pigs, respectively. Only a small percentage of those by-products are nowadays exploited for the production of high added value products such as animal feed, glue, fertilizers, etc., whereas the main management method is direct disposal to landfills. As such, the current disposal methodologies of these by-products are problematic, contributing to environmental contamination, soil degradation, air pollution, and possible health problems. Nevertheless, these by-products are rich in collagen, keratin, and minerals, being thus promising sources of high-value materials such as bioenergy, biochemical and other biomaterials that could be exploited in various industrial applications. In this paper, the possible utilization of slaughterhouse by-products for the production of various high added value materials is discussed. In this context, the various processes presented provide solutions to more sustainable management of the slaughterhouse industry, contributing to the reduction of environmental degradation via soil and water pollution, the avoidance of space depletion due to landfills, and the development of a green economy.

Suggested Citation

  • Derseh Yilie Limeneh & Tamrat Tesfaye & Million Ayele & Nuredin Muhammed Husien & Eyasu Ferede & Adane Haile & Wassie Mengie & Amare Abuhay & Gemeda Gebino Gelebo & Magdi Gibril & Fangong Kong, 2022. "A Comprehensive Review on Utilization of Slaughterhouse By-Product: Current Status and Prospect," Sustainability, MDPI, vol. 14(11), pages 1-20, May.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:11:p:6469-:d:823834
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/11/6469/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/11/6469/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Säll, Sarah & Gren, Ing-Marie, 2015. "Effects of an environmental tax on meat and dairy consumption in Sweden," Food Policy, Elsevier, vol. 55(C), pages 41-53.
    2. Yazdani, Mohammad & Ebrahimi-Nik, Mohammadali & Heidari, Ava & Abbaspour-Fard, Mohammad Hossein, 2019. "Improvement of biogas production from slaughterhouse wastewater using biosynthesized iron nanoparticles from water treatment sludge," Renewable Energy, Elsevier, vol. 135(C), pages 496-501.
    3. Ware, Aidan & Power, Niamh, 2016. "Biogas from cattle slaughterhouse waste: Energy recovery towards an energy self-sufficient industry in Ireland," Renewable Energy, Elsevier, vol. 97(C), pages 541-549.
    4. Latifi, Pooria & Karrabi, Mohsen & Danesh, Shahnaz, 2019. "Anaerobic co-digestion of poultry slaughterhouse wastes with sewage sludge in batch-mode bioreactors (effect of inoculum-substrate ratio and total solids)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 288-296.
    5. Martinez, E. & Marcos, A. & Al-Kassir, A. & Jaramillo, M.A. & Mohamad, A.A., 2012. "Mathematical model of a laboratory-scale plant for slaughterhouse effluents biodigestion for biogas production," Applied Energy, Elsevier, vol. 95(C), pages 210-219.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Salvatore Rapisarda & Giampaolo Di Biase & Martina Mazzon & Claudio Ciavatta & Luciano Cavani, 2022. "Nitrogen Availability in Organic Fertilizers from Tannery and Slaughterhouse By-Products," Sustainability, MDPI, vol. 14(19), pages 1-14, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Loganath, Radhakrishnan & Senophiyah-Mary, J., 2020. "Critical review on the necessity of bioelectricity generation from slaughterhouse industry waste and wastewater using different anaerobic digestion reactors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    2. Vilvert, Amanda Junkes & Saldeira Junior, Joaquim Carlos & Bautitz, Ivonete Rossi & Zenatti, Dilcemara Cristina & Andrade, Maurício Guy & Hermes, Eliane, 2020. "Minimization of energy demand in slaughterhouses: Estimated production of biogas generated from the effluent," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    3. Shirzad, Mohammad & Kazemi Shariat Panahi, Hamed & Dashti, Behrouz B. & Rajaeifar, Mohammad Ali & Aghbashlo, Mortaza & Tabatabaei, Meisam, 2019. "A comprehensive review on electricity generation and GHG emission reduction potentials through anaerobic digestion of agricultural and livestock/slaughterhouse wastes in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 571-594.
    4. Roopnarain, Ashira & Rama, Haripriya & Ndaba, Busiswa & Bello-Akinosho, Maryam & Bamuza-Pemu, Emomotimi & Adeleke, Rasheed, 2021. "Unravelling the anaerobic digestion ‘black box’: Biotechnological approaches for process optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    5. Justyna Górka & Małgorzata Cimochowicz-Rybicka & Dominika Poproch, 2022. "Sludge Management at the Kraków-Płaszów WWTP—Case Study," Sustainability, MDPI, vol. 14(13), pages 1-11, June.
    6. Hijazi, O. & Abdelsalam, E. & Samer, M. & Attia, Y.A. & Amer, B.M.A. & Amer, M.A. & Badr, M. & Bernhardt, H., 2020. "Life cycle assessment of the use of nanomaterials in biogas production from anaerobic digestion of manure," Renewable Energy, Elsevier, vol. 148(C), pages 417-424.
    7. Bauer, Jan M. & Aarestrup, Simon C. & Hansen, Pelle G. & Reisch, Lucia A., 2022. "Nudging more sustainable grocery purchases: Behavioural innovations in a supermarket setting," Technological Forecasting and Social Change, Elsevier, vol. 179(C).
    8. Sandra Arla & Reinaldo Delgado & Leonardo Goyos & Leandro Robaina, 2022. "Two-Phase Experimentation to Determine the Optimal Composition for the Production of Biogas and Biol Substrate Mixing Waste from the Camal de Guayaquil," Energies, MDPI, vol. 15(24), pages 1-19, December.
    9. Saha, Chayan Kumer & Nandi, Rajesh & Akter, Shammi & Hossain, Samira & Kabir, Kazi Bayzid & Kirtania, Kawnish & Islam, Md Tahmid & Guidugli, Laura & Reza, M. Toufiq & Alam, Md Monjurul, 2024. "Technical prospects and challenges of anaerobic co-digestion in Bangladesh: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    10. Stephen Tangwe & Patrick Mukumba & Golden Makaka, 2022. "Comparison of the Prediction Accuracy of Total Viable Bacteria Counts in a Batch Balloon Digester Charged with Cow Manure: Multiple Linear Regression and Non-Linear Regression Models," Energies, MDPI, vol. 15(19), pages 1-23, October.
    11. Dogbe, W. & Gil, J.M., 2018. "Effects of a modified Danish fat tax on food consumption and nutrients intake in Spain," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277237, International Association of Agricultural Economists.
    12. Carlsson, Fredrik & Kataria, Mitesh & Lampi, Elina, 2022. "How much does it take? Willingness to switch to meat substitutes," Ecological Economics, Elsevier, vol. 193(C).
    13. Ortner, Markus & Wöss, David & Schumergruber, Alexander & Pröll, Tobias & Fuchs, Werner, 2015. "Energy self-supply of large abattoir by sustainable waste utilization based on anaerobic mono-digestion," Applied Energy, Elsevier, vol. 143(C), pages 460-471.
    14. Hajizadeh, Abdollah & Mohamadi-Baghmolaei, Mohamad & Cata Saady, Noori M. & Zendehboudi, Sohrab, 2022. "Hydrogen production from biomass through integration of anaerobic digestion and biogas dry reforming," Applied Energy, Elsevier, vol. 309(C).
    15. Ahmadi, Ehsan & Yousefzadeh, Samira & Mokammel, Adel & Miri, Mohammad & Ansari, Mohsen & Arfaeinia, Hossein & Badi, Mojtaba Yegane & Ghaffari, Hamid Reza & Rezaei, Soheila & Mahvi, Amir Hossein, 2020. "Kinetic study and performance evaluation of an integrated two-phase fixed-film baffled bioreactor for bioenergy recovery from wastewater and bio-wasted sludge," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    16. Gren, Ing-Marie & Höglind, Lisa & Jansson, Torbjörn, 2021. "Refunding of a climate tax on food consumption in Sweden," Food Policy, Elsevier, vol. 100(C).
    17. Chen, Wen-Lih & Currao, Gaetano & Li, Yueh-Heng & Kao, Chien-Chun, 2023. "Employing Taguchi method to optimize the performance of a microscale combined heat and power system with Stirling engine and thermophotovoltaic array," Energy, Elsevier, vol. 270(C).
    18. Jakub Sikora & Marcin Niemiec & Anna Szeląg-Sikora & Zofia Gródek-Szostak & Maciej Kuboń & Monika Komorowska, 2020. "The Effect of the Addition of a Fat Emulsifier on the Amount and Quality of the Obtained Biogas," Energies, MDPI, vol. 13(7), pages 1-12, April.
    19. Aguilar-Moreno, Guadalupe Stefanny & Navarro-Cerón, Elizabeth & Velázquez-Hernández, Azucena & Hernández-Eugenio, Guadalupe & Aguilar-Méndez, Miguel Ángel & Espinosa-Solares, Teodoro, 2020. "Enhancing methane yield of chicken litter in anaerobic digestion using magnetite nanoparticles," Renewable Energy, Elsevier, vol. 147(P1), pages 204-213.
    20. Weronika Kruszelnicka, 2020. "A New Model for Environmental Assessment of the Comminution Process in the Chain of Biomass Energy Processing †," Energies, MDPI, vol. 13(2), pages 1-21, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:11:p:6469-:d:823834. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.