IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v118y2014icp173-182.html
   My bibliography  Save this article

Emergy analysis of a biogas-linked agricultural system in rural China – A case study in Gongcheng Yao Autonomous County

Author

Listed:
  • Yang, Jin
  • Chen, Bin

Abstract

Efforts have been made to establish a biogas-linked agricultural production mode to alleviate poverty and pressure on the environment in rural China. In this paper, we evaluate the performance of biogas engineering using emergy analysis in the context of a compound agricultural system. A set of emergy indices are incorporated in the analysis to describe the transformation of energy and materials in the system. We also performed a case study in Gongcheng Yao Autonomous County, China. The carbon mitigation performance, environmental and economic trade-offs, and sustainability level of the system encompassing biogas engineering, crop production and livestock subsystems was investigated in detail. The results showed that the biogas-linked agricultural production mode characterized by further metabolism within the system made a favorable contribution to carbon mitigation and material recycling, although its conversion efficiency was low. Finally, suggestions regarding local agricultural sustainability are provided to shed light on the policies of biogas promotion in rural China.

Suggested Citation

  • Yang, Jin & Chen, Bin, 2014. "Emergy analysis of a biogas-linked agricultural system in rural China – A case study in Gongcheng Yao Autonomous County," Applied Energy, Elsevier, vol. 118(C), pages 173-182.
  • Handle: RePEc:eee:appene:v:118:y:2014:i:c:p:173-182
    DOI: 10.1016/j.apenergy.2013.12.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261913010374
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.12.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kizilaslan, Halil, 2009. "Input-output energy analysis of cherries production in Tokat Province of Turkey," Applied Energy, Elsevier, vol. 86(7-8), pages 1354-1358, July.
    2. Ozkan, Burhan & Akcaoz, Handan & Fert, Cemal, 2004. "Energy input–output analysis in Turkish agriculture," Renewable Energy, Elsevier, vol. 29(1), pages 39-51.
    3. Bruno, Joan Carles & Ortega-López, Víctor & Coronas, Alberto, 2009. "Integration of absorption cooling systems into micro gas turbine trigeneration systems using biogas: Case study of a sewage treatment plant," Applied Energy, Elsevier, vol. 86(6), pages 837-847, June.
    4. Asam, Zaki-ul-Zaman & Poulsen, Tjalfe Gorm & Nizami, Abdul-Sattar & Rafique, Rashad & Kiely, Ger & Murphy, Jerry D., 2011. "How can we improve biomethane production per unit of feedstock in biogas plants?," Applied Energy, Elsevier, vol. 88(6), pages 2013-2018, June.
    5. Lou, Bo & Ulgiati, Sergio, 2013. "Identifying the environmental support and constraints to the Chinese economic growth—An application of the Emergy Accounting method," Energy Policy, Elsevier, vol. 55(C), pages 217-233.
    6. Nzila, Charles & Dewulf, Jo & Spanjers, Henri & Tuigong, David & Kiriamiti, Henry & van Langenhove, Herman, 2012. "Multi criteria sustainability assessment of biogas production in Kenya," Applied Energy, Elsevier, vol. 93(C), pages 496-506.
    7. Jiang, M.M. & Chen, B. & Zhou, J.B. & Tao, F.R. & Li, Z. & Yang, Z.F. & Chen, G.Q., 2007. "Emergy account for biomass resource exploitation by agriculture in China," Energy Policy, Elsevier, vol. 35(9), pages 4704-4719, September.
    8. Zhou, Zhongren & Wu, Wenliang & Chen, Qun & Chen, Shufeng, 2008. "Study on sustainable development of rural household energy in northern China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(8), pages 2227-2239, October.
    9. Wang, Xiaoqiang & Nordlander, Eva & Thorin, Eva & Yan, Jinyue, 2013. "Microalgal biomethane production integrated with an existing biogas plant: A case study in Sweden," Applied Energy, Elsevier, vol. 112(C), pages 478-484.
    10. Murphy, J.D. & Power, N., 2009. "Technical and economic analysis of biogas production in Ireland utilising three different crop rotations," Applied Energy, Elsevier, vol. 86(1), pages 25-36, January.
    11. Dong, Xiaobin & Ulgiati, Sergio & Yan, Maochao & Zhang, Xinshi & Gao, Wangsheng, 2008. "Energy and eMergy evaluation of bioethanol production from wheat in Henan Province, China," Energy Policy, Elsevier, vol. 36(10), pages 3882-3892, October.
    12. Höhn, J. & Lehtonen, E. & Rasi, S. & Rintala, J., 2014. "A Geographical Information System (GIS) based methodology for determination of potential biomasses and sites for biogas plants in southern Finland," Applied Energy, Elsevier, vol. 113(C), pages 1-10.
    13. Huopana, Tuomas & Song, Han & Kolehmainen, Mikko & Niska, Harri, 2013. "A regional model for sustainable biogas electricity production: A case study from a Finnish province," Applied Energy, Elsevier, vol. 102(C), pages 676-686.
    14. Zhang, L.X. & Yang, Z.F. & Chen, G.Q., 2007. "Emergy analysis of cropping-grazing system in Inner Mongolia Autonomous Region, China," Energy Policy, Elsevier, vol. 35(7), pages 3843-3855, July.
    15. Xiaohua, Wang & Zhenmin, Feng, 2004. "Biofuel use and its emission of noxious gases in rural China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 8(2), pages 183-192, April.
    16. Ju, L.P. & Chen, B., 2011. "Embodied energy and emergy evaluation of a typical biodiesel production chain in China," Ecological Modelling, Elsevier, vol. 222(14), pages 2385-2392.
    17. Gustavsson, Jenny & Shakeri Yekta, Sepehr & Sundberg, Carina & Karlsson, Anna & Ejlertsson, Jörgen & Skyllberg, Ulf & Svensson, Bo H., 2013. "Bioavailability of cobalt and nickel during anaerobic digestion of sulfur-rich stillage for biogas formation," Applied Energy, Elsevier, vol. 112(C), pages 473-477.
    18. Lantz, Mikael, 2012. "The economic performance of combined heat and power from biogas produced from manure in Sweden – A comparison of different CHP technologies," Applied Energy, Elsevier, vol. 98(C), pages 502-511.
    19. Martinez, E. & Marcos, A. & Al-Kassir, A. & Jaramillo, M.A. & Mohamad, A.A., 2012. "Mathematical model of a laboratory-scale plant for slaughterhouse effluents biodigestion for biogas production," Applied Energy, Elsevier, vol. 95(C), pages 210-219.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Binyue & Chen, Bin, 2017. "Sustainability accounting of a household biogas project based on emergy," Applied Energy, Elsevier, vol. 194(C), pages 819-831.
    2. Deymi-Dashtebayaz, Mahdi & Norani, Marziye, 2021. "Sustainability assessment and emergy analysis of employing the CCHP system under two different scenarios in a data center," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    3. Huang, Xianlei & Wang, Shu & Shi, Zuliang & Fang, Linna & Yin, Changbin, 2022. "Challenges and strategies for biogas production in the circular agricultural waste utilization model: A case study in rural China," Energy, Elsevier, vol. 241(C).
    4. Jiang, Zhixiang & Dai, Yanhui & Luo, Xianxiang & Liu, Guocheng & Wang, Hefang & Zheng, Hao & Wang, Zhenyu, 2017. "Assessment of bioenergy development potential and its environmental impact for rural household energy consumption: A case study in Shandong, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1153-1161.
    5. Qiang Wang & Thomas Dogot & Xianlei Huang & Linna Fang & Changbin Yin, 2020. "Coupling of Rural Energy Structure and Straw Utilization: Based on Cases in Hebei, China," Sustainability, MDPI, vol. 12(3), pages 1-21, January.
    6. Djatkov, Djordje & Effenberger, Mathias & Martinov, Milan, 2014. "Method for assessing and improving the efficiency of agricultural biogas plants based on fuzzy logic and expert systems," Applied Energy, Elsevier, vol. 134(C), pages 163-175.
    7. He Zhang & Ashish T. Asutosh & Junxue Zhang, 2022. "A quantitative sustainable comparative study of two biogas systems based on energy, emergy and entropy methods in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(12), pages 13583-13609, December.
    8. Tian, Xu & Sarkis, Joseph, 2020. "Expanding green supply chain performance measurement through emergy accounting and analysis," International Journal of Production Economics, Elsevier, vol. 225(C).
    9. Baena-Moreno, Francisco M. & Pastor-Pérez, Laura & Zhang, Zhien & Reina, T.R., 2020. "Stepping towards a low-carbon economy. Formic acid from biogas as case of study," Applied Energy, Elsevier, vol. 268(C).
    10. Yang, Jin & Chen, Bin, 2016. "Emergy-based sustainability evaluation of wind power generation systems," Applied Energy, Elsevier, vol. 177(C), pages 239-246.
    11. Khishtandar, Soheila, 2019. "Simulation based evolutionary algorithms for fuzzy chance-constrained biogas supply chain design," Applied Energy, Elsevier, vol. 236(C), pages 183-195.
    12. Zhang, Xingping & Luo, Kaiyan & Tan, Qinliang, 2016. "A feedstock supply model integrating the official organization for China's biomass generation plants," Energy Policy, Elsevier, vol. 97(C), pages 276-290.
    13. Tao, Yu & Li, Feng & Liu, Xusheng & Zhao, Dan & Sun, Xiao & Xu, Lianfang, 2015. "Variation in ecosystem services across an urbanization gradient: A study of terrestrial carbon stocks from Changzhou, China," Ecological Modelling, Elsevier, vol. 318(C), pages 210-216.
    14. Jianying Feng & Jing Wang & Xiaoshuan Zhang & Fengtao Zhao & Radoslava Kanianska & Dong Tian, 2015. "Design and Implementation of Emergy-Based Sustainability Decision Assessment System for Protected Grape Cultivation," Sustainability, MDPI, vol. 7(10), pages 1-24, October.
    15. Pan, Hengyu & Geng, Yong & Jiang, Ping & Dong, Huijuan & Sun, Lu & Wu, Rui, 2018. "An emergy based sustainability evaluation on a combined landfill and LFG power generation system," Energy, Elsevier, vol. 143(C), pages 310-322.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Shaoqing & Chen, Bin, 2012. "Sustainability and future alternatives of biogas-linked agrosystem (BLAS) in China: An emergy synthesis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3948-3959.
    2. Yang, Q. & Chen, G.Q. & Liao, S. & Zhao, Y.H. & Peng, H.W. & Chen, H.P., 2013. "Environmental sustainability of wind power: An emergy analysis of a Chinese wind farm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 229-239.
    3. Giannetti, B.F. & Almeida, C.M.V.B. & Bonilla, S.H., 2010. "Comparing emergy accounting with well-known sustainability metrics: The case of Southern Cone Common Market, Mercosur," Energy Policy, Elsevier, vol. 38(7), pages 3518-3526, July.
    4. Maghanaki, M. Mohammadi & Ghobadian, B. & Najafi, G. & Galogah, R. Janzadeh, 2013. "Potential of biogas production in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 702-714.
    5. Pang, Mingyue & Zhang, Lixiao & Ulgiati, Sergio & Wang, Changbo, 2015. "Ecological impacts of small hydropower in China: Insights from an emergy analysis of a case plant," Energy Policy, Elsevier, vol. 76(C), pages 112-122.
    6. Zhang, Binyue & Chen, Bin, 2017. "Sustainability accounting of a household biogas project based on emergy," Applied Energy, Elsevier, vol. 194(C), pages 819-831.
    7. Chen, Shaoqing & Chen, Bin, 2014. "Energy efficiency and sustainability of complex biogas systems: A 3-level emergetic evaluation," Applied Energy, Elsevier, vol. 115(C), pages 151-163.
    8. Li, Nan & Jiang, Yuqing & Mu, Hailin & Yu, Zhixin, 2018. "Efficiency evaluation and improvement potential for the Chinese agricultural sector at the provincial level based on data envelopment analysis (DEA)," Energy, Elsevier, vol. 164(C), pages 1145-1160.
    9. Wang, Xiuhong & Shen, Jianxiu & Zhang, Wei, 2014. "Emergy evaluation of agricultural sustainability of Northwest China before and after the grain-for-green policy," Energy Policy, Elsevier, vol. 67(C), pages 508-516.
    10. O’Shea, Richard & Kilgallon, Ian & Wall, David & Murphy, Jerry D., 2016. "Quantification and location of a renewable gas industry based on digestion of wastes in Ireland," Applied Energy, Elsevier, vol. 175(C), pages 229-239.
    11. Özgöz, Engin & Altuntaş, Ebubekir & Asiltürk, Murat, 2017. "Effects of soil tillage on energy use in potato farming in Central Anatolia of Turkey," Energy, Elsevier, vol. 141(C), pages 1517-1523.
    12. Fadavi, Raheleh & Samavatean, Naiemeh & Keyhani, Alireza & Saied, Seyyed, 2012. "An Analysis of Improving Energy use with Data Envelopment Analysis in Apple Orchard," Asian Journal of Agriculture and Rural Development, Asian Economic and Social Society (AESS), vol. 2(02), pages 1-11, June.
    13. Gasparatos, Alexandros & El-Haram, Mohamed & Horner, Malcolm, 2009. "Assessing the sustainability of the UK society using thermodynamic concepts: Part 1," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1074-1081, June.
    14. Ma, Hengyun & Oxley, Les & Gibson, John & Li, Wen, 2010. "A survey of China's renewable energy economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 438-445, January.
    15. Geng, Yong & Tian, Xu & Sarkis, Joseph & Ulgiati, Sergio, 2017. "China-USA Trade: Indicators for Equitable and Environmentally Balanced Resource Exchange," Ecological Economics, Elsevier, vol. 132(C), pages 245-254.
    16. Tabatabaie, Seyed Mohammad Hossein & Rafiee, Shahin & Keyhani, Alireza & Heidari, Mohammad Davoud, 2013. "Energy use pattern and sensitivity analysis of energy inputs and input costs for pear production in Iran," Renewable Energy, Elsevier, vol. 51(C), pages 7-12.
    17. Kazemi, Hossein & Kamkar, Behnam & Lakzaei, Somayeh & Badsar, Meysam & Shahbyki, Malihe, 2015. "Energy flow analysis for rice production in different geographical regions of Iran," Energy, Elsevier, vol. 84(C), pages 390-396.
    18. Siegrist, Armin & Bowman, Gillianne & Burg, Vanessa, 2022. "Energy generation potentials from agricultural residues: The influence of techno-spatial restrictions on biomethane, electricity, and heat production," Applied Energy, Elsevier, vol. 327(C).
    19. Ortner, Markus & Rachbauer, Lydia & Somitsch, Walter & Fuchs, Werner, 2014. "Can bioavailability of trace nutrients be measured in anaerobic digestion?," Applied Energy, Elsevier, vol. 126(C), pages 190-198.
    20. Elsoragaby, Suha & Yahya, Azmi & Mahadi, Muhammad Razif & Nawi, Nazmi Mat & Mairghany, Modather, 2019. "Energy utilization in major crop cultivation," Energy, Elsevier, vol. 173(C), pages 1285-1303.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:118:y:2014:i:c:p:173-182. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.