Modeling and Forecasting Medium-Term Electricity Consumption Using Component Estimation Technique
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Wang, Yuanyuan & Wang, Jianzhou & Zhao, Ge & Dong, Yao, 2012. "Application of residual modification approach in seasonal ARIMA for electricity demand forecasting: A case study of China," Energy Policy, Elsevier, vol. 48(C), pages 284-294.
- Abdel-Aal, R.E. & Al-Garni, A.Z. & Al-Nassar, Y.N., 1997. "Modelling and forecasting monthly electric energy consumption in eastern Saudi Arabia using abductive networks," Energy, Elsevier, vol. 22(9), pages 911-921.
- Shahbaz, Muhammad & Lean, Hooi Hooi, 2012.
"The dynamics of electricity consumption and economic growth: A revisit study of their causality in Pakistan,"
Energy, Elsevier, vol. 39(1), pages 146-153.
- Muhammad, Shahbaz & Lean, Hooi Hooi, 2011. "The Dynamics of Electricity Consumption and Economic Growth:A Revisit Study of Their Causality in Pakistan," MPRA Paper 33196, University Library of Munich, Germany, revised 06 Sep 2011.
- Ohtsuka, Yoshihiro & Oga, Takashi & Kakamu, Kazuhiko, 2010. "Forecasting electricity demand in Japan: A Bayesian spatial autoregressive ARMA approach," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2721-2735, November.
- Wang, Jianzhou & Zhu, Wenjin & Zhang, Wenyu & Sun, Donghuai, 2009. "A trend fixed on firstly and seasonal adjustment model combined with the [epsilon]-SVR for short-term forecasting of electricity demand," Energy Policy, Elsevier, vol. 37(11), pages 4901-4909, November.
- Weron, R & Bierbrauer, M & Trück, S, 2004.
"Modeling electricity prices: jump diffusion and regime switching,"
Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 336(1), pages 39-48.
- Rafal Weron & Michael Bierbrauer & Stefan Trück, 2003. "Modeling electricity prices: jump diffusion and regime switching," HSC Research Reports HSC/03/01, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- Hahn, Heiko & Meyer-Nieberg, Silja & Pickl, Stefan, 2009. "Electric load forecasting methods: Tools for decision making," European Journal of Operational Research, Elsevier, vol. 199(3), pages 902-907, December.
- Giuseppe Cavaliere, 2005.
"Unit Root Tests under Time-Varying Variances,"
Econometric Reviews, Taylor & Francis Journals, vol. 23(3), pages 259-292.
- Giuseppe Cavaliere, 2003. "Unit root tests under time-varying variances," Quaderni di Dipartimento 2, Department of Statistics, University of Bologna.
- Masoud Sobhani & Allison Campbell & Saurabh Sangamwar & Changlin Li & Tao Hong, 2019. "Combining Weather Stations for Electric Load Forecasting," Energies, MDPI, vol. 12(8), pages 1-11, April.
- Rong Chen & John L. Harris & Jun M. Liu & Lon-Mu Liu, 2006. "A semi-parametric time series approach in modeling hourly electricity loads," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(8), pages 537-559.
- Vu, D.H. & Muttaqi, K.M. & Agalgaonkar, A.P., 2015. "A variance inflation factor and backward elimination based robust regression model for forecasting monthly electricity demand using climatic variables," Applied Energy, Elsevier, vol. 140(C), pages 385-394.
- repec:pid:wpaper:2012:4 is not listed on IDEAS
- Afia Malik, 2012. "Power Crisis in Pakistan: A Crisis in Governance?," PIDE Monograph Series 2012:1, Pakistan Institute of Development Economics.
- Mohamed, Zaid & Bodger, Pat, 2005. "Forecasting electricity consumption in New Zealand using economic and demographic variables," Energy, Elsevier, vol. 30(10), pages 1833-1843.
- Akbar Ullah & Karim Khan & Munazza Akhtar, 2014. "Energy Intensity: A Decomposition Exercise for Pakistan," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 53(4), pages 531-549.
- Alvaro Escribano & J. Ignacio Peña & Pablo Villaplana, 2011.
"Modelling Electricity Prices: International Evidence,"
Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 73(5), pages 622-650, October.
- Villaplana Conde, Pablo, 2002. "Modeling electricity prices: international evidence," UC3M Working papers. Economics we022708, Universidad Carlos III de Madrid. Departamento de EconomÃa.
- De Jong Cyriel, 2006. "The Nature of Power Spikes: A Regime-Switch Approach," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 10(3), pages 1-28, September.
- Diebold, Francis X & Mariano, Roberto S, 2002.
"Comparing Predictive Accuracy,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
- Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
- Francis X. Diebold & Roberto S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
- Akay, Diyar & Atak, Mehmet, 2007. "Grey prediction with rolling mechanism for electricity demand forecasting of Turkey," Energy, Elsevier, vol. 32(9), pages 1670-1675.
- Rashid Amjad & Musleh Ud Din & Idrees Khawaja & Nasir Iqbal & Ahmad Waqar Qasim, 2012. "Fiscal Federalism In Pakistan," PIDE Monograph Series 2012:4, Pakistan Institute of Development Economics.
- Jamil, Faisal, 2013. "On the electricity shortage, price and electricity theft nexus," Energy Policy, Elsevier, vol. 54(C), pages 267-272.
- Sergei Kulakov, 2020. "X-Model: Further Development and Possible Modifications," Forecasting, MDPI, vol. 2(1), pages 1-16, February.
- Ismail Shah & Francesco Lisi, 2020. "Forecasting of electricity price through a functional prediction of sale and purchase curves," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 242-259, March.
- Kessides, Ioannis N., 2013. "Chaos in power: Pakistan's electricity crisis," Energy Policy, Elsevier, vol. 55(C), pages 271-285.
- Bruno Bosco & Lucia Parisio & Matteo Pelagatti & Fabio Baldi, 2010. "Long-run relations in european electricity prices," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(5), pages 805-832.
- Nawaz, Saima & Iqbal, Nasir & Anwar, Saba, 2014. "Modelling electricity demand using the STAR (Smooth Transition Auto-Regressive) model in Pakistan," Energy, Elsevier, vol. 78(C), pages 535-542.
- Hussain, Anwar & Rahman, Muhammad & Memon, Junaid Alam, 2016. "Forecasting electricity consumption in Pakistan: the way forward," Energy Policy, Elsevier, vol. 90(C), pages 73-80.
- Abdel-Aal, R.E. & Al-Garni, A.Z., 1997. "Forecasting monthly electric energy consumption in eastern Saudi Arabia using univariate time-series analysis," Energy, Elsevier, vol. 22(11), pages 1059-1069.
- Wei-Chiang Hong & Yucheng Dong & Chien-Yuan Lai & Li-Yueh Chen & Shih-Yung Wei, 2011. "SVR with Hybrid Chaotic Immune Algorithm for Seasonal Load Demand Forecasting," Energies, MDPI, vol. 4(6), pages 1-18, June.
- Kosater, Peter & Mosler, Karl, 2006.
"Can Markov regime-switching models improve power-price forecasts? Evidence from German daily power prices,"
Applied Energy, Elsevier, vol. 83(9), pages 943-958, September.
- Kosater, Peter & Mosler, Karl, 2005. "Can Markov-regime switching models improve power price forecasts? Evidence for German daily power prices," Discussion Papers in Econometrics and Statistics 1/05, University of Cologne, Institute of Econometrics and Statistics.
- Bianco, Vincenzo & Manca, Oronzio & Nardini, Sergio, 2009. "Electricity consumption forecasting in Italy using linear regression models," Energy, Elsevier, vol. 34(9), pages 1413-1421.
- Komi Nagbe & Jairo Cugliari & Julien Jacques, 2018. "Short-Term Electricity Demand Forecasting Using a Functional State Space Model," Energies, MDPI, vol. 11(5), pages 1-24, May.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Hasnain Iftikhar & Josue E. Turpo-Chaparro & Paulo Canas Rodrigues & Javier Linkolk López-Gonzales, 2023. "Forecasting Day-Ahead Electricity Prices for the Italian Electricity Market Using a New Decomposition—Combination Technique," Energies, MDPI, vol. 16(18), pages 1-23, September.
- Alessandro Bosisio & Matteo Moncecchi & Andrea Morotti & Marco Merlo, 2021. "Machine Learning and GIS Approach for Electrical Load Assessment to Increase Distribution Networks Resilience," Energies, MDPI, vol. 14(14), pages 1-23, July.
- Hasnain Iftikhar & Aimel Zafar & Josue E. Turpo-Chaparro & Paulo Canas Rodrigues & Javier Linkolk López-Gonzales, 2023. "Forecasting Day-Ahead Brent Crude Oil Prices Using Hybrid Combinations of Time Series Models," Mathematics, MDPI, vol. 11(16), pages 1-19, August.
- Muhammad Ahmar & Fahad Ali & Yuexiang Jiang & Mamdooh Alwetaishi & Sherif S. M. Ghoneim, 2022. "Households’ Energy Choices in Rural Pakistan," Energies, MDPI, vol. 15(9), pages 1-23, April.
- Juan M. Lujano-Rojas & Rodolfo Dufo-López & Jesús Sergio Artal-Sevil & Eduardo García-Paricio, 2023. "Searching for Promisingly Trained Artificial Neural Networks," Forecasting, MDPI, vol. 5(3), pages 1-26, September.
- Chatum Sankalpa & Somsak Kittipiyakul & Seksan Laitrakun, 2022. "Forecasting Short-Term Electricity Load Using Validated Ensemble Learning," Energies, MDPI, vol. 15(22), pages 1-30, November.
- Hasnain Iftikhar & Nadeela Bibi & Paulo Canas Rodrigues & Javier Linkolk López-Gonzales, 2023. "Multiple Novel Decomposition Techniques for Time Series Forecasting: Application to Monthly Forecasting of Electricity Consumption in Pakistan," Energies, MDPI, vol. 16(6), pages 1-17, March.
- Hasnain Iftikhar & Murad Khan & Zardad Khan & Faridoon Khan & Huda M Alshanbari & Zubair Ahmad, 2023. "A Comparative Analysis of Machine Learning Models: A Case Study in Predicting Chronic Kidney Disease," Sustainability, MDPI, vol. 15(3), pages 1-13, February.
- Zubair Ahmad & Zahra Almaspoor & Faridoon Khan & Mahmoud El-Morshedy, 2022. "On Predictive Modeling Using a New Flexible Weibull Distribution and Machine Learning Approach: Analyzing the COVID-19 Data," Mathematics, MDPI, vol. 10(11), pages 1-26, May.
- Maciej Slowik & Wieslaw Urban, 2022. "Machine Learning Short-Term Energy Consumption Forecasting for Microgrids in a Manufacturing Plant," Energies, MDPI, vol. 15(9), pages 1-16, May.
- Nebojsa Bacanin & Catalin Stoean & Miodrag Zivkovic & Miomir Rakic & Roma Strulak-Wójcikiewicz & Ruxandra Stoean, 2023. "On the Benefits of Using Metaheuristics in the Hyperparameter Tuning of Deep Learning Models for Energy Load Forecasting," Energies, MDPI, vol. 16(3), pages 1-21, February.
- Daniel Ramos & Mahsa Khorram & Pedro Faria & Zita Vale, 2021. "Load Forecasting in an Office Building with Different Data Structure and Learning Parameters," Forecasting, MDPI, vol. 3(1), pages 1-14, March.
- Nazila Pourhaji & Mohammad Asadpour & Ali Ahmadian & Ali Elkamel, 2022. "The Investigation of Monthly/Seasonal Data Clustering Impact on Short-Term Electricity Price Forecasting Accuracy: Ontario Province Case Study," Sustainability, MDPI, vol. 14(5), pages 1-14, March.
- Hasnain Iftikhar & Josue E. Turpo-Chaparro & Paulo Canas Rodrigues & Javier Linkolk López-Gonzales, 2023. "Day-Ahead Electricity Demand Forecasting Using a Novel Decomposition Combination Method," Energies, MDPI, vol. 16(18), pages 1-22, September.
- Nahid Sultana & S. M. Zakir Hossain & Salma Hamad Almuhaini & Dilek Düştegör, 2022. "Bayesian Optimization Algorithm-Based Statistical and Machine Learning Approaches for Forecasting Short-Term Electricity Demand," Energies, MDPI, vol. 15(9), pages 1-26, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wang, Shuai & Yu, Lean & Tang, Ling & Wang, Shouyang, 2011. "A novel seasonal decomposition based least squares support vector regression ensemble learning approach for hydropower consumption forecasting in China," Energy, Elsevier, vol. 36(11), pages 6542-6554.
- Zhao, Weigang & Wang, Jianzhou & Lu, Haiyan, 2014. "Combining forecasts of electricity consumption in China with time-varying weights updated by a high-order Markov chain model," Omega, Elsevier, vol. 45(C), pages 80-91.
- Debnath, Kumar Biswajit & Mourshed, Monjur, 2018. "Forecasting methods in energy planning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 297-325.
- Ismail Shah & Hasnain Iftikhar & Sajid Ali & Depeng Wang, 2019. "Short-Term Electricity Demand Forecasting Using Components Estimation Technique," Energies, MDPI, vol. 12(13), pages 1-17, July.
- Lisi, Francesco & Nan, Fany, 2014. "Component estimation for electricity prices: Procedures and comparisons," Energy Economics, Elsevier, vol. 44(C), pages 143-159.
- Suganthi, L. & Samuel, Anand A., 2012. "Energy models for demand forecasting—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1223-1240.
- Moustris, K. & Kavadias, K.A. & Zafirakis, D. & Kaldellis, J.K., 2020. "Medium, short and very short-term prognosis of load demand for the Greek Island of Tilos using artificial neural networks and human thermal comfort-discomfort biometeorological data," Renewable Energy, Elsevier, vol. 147(P1), pages 100-109.
- Tang, Ling & Yu, Lean & Wang, Shuai & Li, Jianping & Wang, Shouyang, 2012. "A novel hybrid ensemble learning paradigm for nuclear energy consumption forecasting," Applied Energy, Elsevier, vol. 93(C), pages 432-443.
- Velasquez, Carlos E. & Zocatelli, Matheus & Estanislau, Fidellis B.G.L. & Castro, Victor F., 2022. "Analysis of time series models for Brazilian electricity demand forecasting," Energy, Elsevier, vol. 247(C).
- Nibedita Mahanta & Ruma Talukdar, 2024. "Forecasting of Electricity Consumption by Seasonal Autoregressive Integrated Moving Average Model in Assam, India," International Journal of Energy Economics and Policy, Econjournals, vol. 14(5), pages 393-400, September.
- Weron, Rafał, 2014.
"Electricity price forecasting: A review of the state-of-the-art with a look into the future,"
International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
- Rafal Weron, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," HSC Research Reports HSC/14/07, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- Bianco, Vincenzo & Manca, Oronzio & Nardini, Sergio & Minea, Alina A., 2010. "Analysis and forecasting of nonresidential electricity consumption in Romania," Applied Energy, Elsevier, vol. 87(11), pages 3584-3590, November.
- Kankal, Murat & AkpInar, Adem & Kömürcü, Murat Ihsan & Özsahin, Talat Sükrü, 2011. "Modeling and forecasting of Turkey's energy consumption using socio-economic and demographic variables," Applied Energy, Elsevier, vol. 88(5), pages 1927-1939, May.
- Yongquan Dong & Zichen Zhang & Wei-Chiang Hong, 2018. "A Hybrid Seasonal Mechanism with a Chaotic Cuckoo Search Algorithm with a Support Vector Regression Model for Electric Load Forecasting," Energies, MDPI, vol. 11(4), pages 1-21, April.
- Cheng-Wen Lee & Bing-Yi Lin, 2016. "Application of Hybrid Quantum Tabu Search with Support Vector Regression (SVR) for Load Forecasting," Energies, MDPI, vol. 9(11), pages 1-16, October.
- Steinbuks, Jevgenijs, 2019. "Assessing the accuracy of electricity production forecasts in developing countries," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1175-1185.
- Xiao, Liye & Wang, Jianzhou & Hou, Ru & Wu, Jie, 2015. "A combined model based on data pre-analysis and weight coefficients optimization for electrical load forecasting," Energy, Elsevier, vol. 82(C), pages 524-549.
- Perwez, Usama & Sohail, Ahmed & Hassan, Syed Fahad & Zia, Usman, 2015. "The long-term forecast of Pakistan's electricity supply and demand: An application of long range energy alternatives planning," Energy, Elsevier, vol. 93(P2), pages 2423-2435.
- Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
- Varma, Rashmi & Sushil,, 2019. "Bridging the electricity demand and supply gap using dynamic modeling in the Indian context," Energy Policy, Elsevier, vol. 132(C), pages 515-535.
More about this item
Keywords
Pakistan electricity consumption; components estimation; forecasting; parametric and nonparametric models; MAPE and MAE;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jforec:v:2:y:2020:i:2:p:9-179:d:362019. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.