IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v336y2004i1p39-48.html
   My bibliography  Save this article

Modeling electricity prices: jump diffusion and regime switching

Author

Listed:
  • Weron, R
  • Bierbrauer, M
  • Trück, S

Abstract

In this paper we address the issue of modeling spot electricity prices. After summarizing the stylized facts about spot electricity prices, we review a number of models proposed in the literature. Afterwards we fit a jump diffusion and a regime switching model to spot prices from the Nordic power exchange and discuss the pros and cons of each one.

Suggested Citation

  • Weron, R & Bierbrauer, M & Trück, S, 2004. "Modeling electricity prices: jump diffusion and regime switching," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 336(1), pages 39-48.
  • Handle: RePEc:eee:phsmap:v:336:y:2004:i:1:p:39-48
    DOI: 10.1016/j.physa.2004.01.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437104000317
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2004.01.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Härdle, Wolfgang Karl & Burnecki, Krzysztof & Weron, Rafał, 2004. "Simulation of risk processes," Papers 2004,01, Humboldt University of Berlin, Center for Applied Statistics and Economics (CASE).
    2. Rafal Weron & Ingve Simonsen & Piotr Wilman, 2003. "Modeling highly volatile and seasonal markets: evidence from the Nord Pool electricity market," Econometrics 0303007, University Library of Munich, Germany.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rafal Weron, 2006. "Modeling and Forecasting Electricity Loads and Prices: A Statistical Approach," HSC Books, Hugo Steinhaus Center, Wroclaw University of Science and Technology, number hsbook0601, December.
    2. Härdle, Wolfgang Karl & Burnecki, Krzysztof & Weron, Rafał, 2004. "Simulation of risk processes," Papers 2004,01, Humboldt University of Berlin, Center for Applied Statistics and Economics (CASE).
    3. Nowotarski, Jakub & Tomczyk, Jakub & Weron, Rafał, 2013. "Robust estimation and forecasting of the long-term seasonal component of electricity spot prices," Energy Economics, Elsevier, vol. 39(C), pages 13-27.
    4. Björn Lutz, 2010. "Pricing of Derivatives on Mean-Reverting Assets," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-642-02909-7, October.
    5. Sandro Sapio, 2004. "Markets Design, Bidding Rules, and Long Memory in Electricity Prices," Revue d'Économie Industrielle, Programme National Persée, vol. 107(1), pages 151-170.
    6. Auer, Benjamin R., 2016. "On the performance of simple trading rules derived from the fractal dynamics of gold and silver price fluctuations," Finance Research Letters, Elsevier, vol. 16(C), pages 255-267.
    7. A. Christian Silva & Ju-Yi Yen, 2010. "Stochastic resonance and the trade arrival rate of stocks," Quantitative Finance, Taylor & Francis Journals, vol. 10(5), pages 461-466.
    8. Wolfgang Karl Härdle & Brenda López Cabrera, 2010. "Calibrating CAT Bonds for Mexican Earthquakes," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 77(3), pages 625-650, September.
    9. Weron, Rafal, 2008. "Market price of risk implied by Asian-style electricity options and futures," Energy Economics, Elsevier, vol. 30(3), pages 1098-1115, May.
    10. Michael Bierbrauer & Stefan Trueck & Rafal Weron, 2005. "Modeling electricity prices with regime switching models," Econometrics 0502005, University Library of Munich, Germany.
    11. Serati, Massimiliano & Manera, Matteo & Plotegher, Michele, 2008. "Modeling Electricity Prices: From the State of the Art to a Draft of a New Proposal," International Energy Markets Working Papers 44426, Fondazione Eni Enrico Mattei (FEEM).
    12. Jan Seifert & Marliese Uhrig-Homburg, 2007. "Modelling jumps in electricity prices: theory and empirical evidence," Review of Derivatives Research, Springer, vol. 10(1), pages 59-85, January.
    13. Abdou Kâ Diongue & Dominique Guegan, 2008. "The k-factor Gegenbauer asymmetric Power GARCH approach for modelling electricity spot price dynamics," Post-Print halshs-00259225, HAL.
    14. Krzysztof Burnecki & Rafal Weron, 2006. "Visualization tools for insurance risk processes," HSC Research Reports HSC/06/06, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
    15. Rafal Weron, 2005. "Market price of risk implied by Asian-style electricity options," Econometrics 0502003, University Library of Munich, Germany.
    16. Parail, V., 2010. "Properties of Electricity Prices and the Drivers of Interconnector Revenue," Cambridge Working Papers in Economics 1059, Faculty of Economics, University of Cambridge.
    17. Burnecki, Krzysztof & Janczura, Joanna & Weron, Rafal, 2010. "Building Loss Models," MPRA Paper 25492, University Library of Munich, Germany.
    18. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    19. Martin Rypdal & Ola L{o}vsletten, 2012. "Modeling electricity spot prices using mean-reverting multifractal processes," Papers 1201.6137, arXiv.org.
    20. Chernobai, Anna & Burnecki, Krzysztof & Rachev, Svetlozar & Trueck, Stefan & Weron, Rafal, 2005. "Modelling catastrophe claims with left-truncated severity distributions (extended version)," MPRA Paper 10423, University Library of Munich, Germany.

    More about this item

    Keywords

    Electricity price; Jump diffusion; Regime switching; Seasonality;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:336:y:2004:i:1:p:39-48. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.