IDEAS home Printed from https://ideas.repec.org/a/eco/journ2/2024-05-40.html
   My bibliography  Save this article

Forecasting of Electricity Consumption by Seasonal Autoregressive Integrated Moving Average Model in Assam, India

Author

Listed:
  • Nibedita Mahanta

    (Department of Statistics, Bhattadev University, Bajali, Assam, India)

  • Ruma Talukdar

    (Department of Statistics, Cotton University, Panbazar, Guwahati, Assam, India)

Abstract

Sustainable electricity consumption, which is about balancing economic growth, social development and environmental protection are the core principles of the Sustainable Development Goal (SDG). Accurate forecasting of electricity consumption is very important for attaining SDG - 7 which aims to ensure access to affordable, reliable, sustainable and modern energy for all. Through this paper, attempt is made to forecast monthly electricity consumption in Assam. For this purpose, one of the most widely used time series techniques, viz., Seasonal Autoregressive Integrated Moving Average (SARIMA) is applied by considering the time period April, 2013 to February, 2023 to study the seasonal influence on the electricity consumption in Assam. By applying Augmented Dickey Fuller test, it is observed that the data series becomes stationary at first order difference and the result of Canova Hansen test reveals that no seasonal differencing is required for our considering time period. SARIMA (1,1,1) (1,0,1)12 has been selected for forecasting purpose by following the results of Akaike Information Criterion. By analyzing the model statistics, residual ACF and PACF plots of the selected model, it is found that SARIMA (1,1,1) (1,0,1)12 can be effectively recommended for forecasting of monthly electricity consumption in Assam with Mean Absolute Percentage Error as 3.12%.

Suggested Citation

  • Nibedita Mahanta & Ruma Talukdar, 2024. "Forecasting of Electricity Consumption by Seasonal Autoregressive Integrated Moving Average Model in Assam, India," International Journal of Energy Economics and Policy, Econjournals, vol. 14(5), pages 393-400, September.
  • Handle: RePEc:eco:journ2:2024-05-40
    as

    Download full text from publisher

    File URL: https://www.econjournals.com/index.php/ijeep/article/download/16506/8179
    Download Restriction: no

    File URL: https://www.econjournals.com/index.php/ijeep/article/view/16506
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jihoon Moon & Sungwoo Park & Seungmin Rho & Eenjun Hwang, 2019. "A comparative analysis of artificial neural network architectures for building energy consumption forecasting," International Journal of Distributed Sensor Networks, , vol. 15(9), pages 15501477198, September.
    2. Ediger, Volkan S. & Akar, Sertac, 2007. "ARIMA forecasting of primary energy demand by fuel in Turkey," Energy Policy, Elsevier, vol. 35(3), pages 1701-1708, March.
    3. Wang, Yuanyuan & Wang, Jianzhou & Zhao, Ge & Dong, Yao, 2012. "Application of residual modification approach in seasonal ARIMA for electricity demand forecasting: A case study of China," Energy Policy, Elsevier, vol. 48(C), pages 284-294.
    4. Hussain, Anwar & Rahman, Muhammad & Memon, Junaid Alam, 2016. "Forecasting electricity consumption in Pakistan: the way forward," Energy Policy, Elsevier, vol. 90(C), pages 73-80.
    5. Javeed Nizami, SSAK & Al-Garni, Ahmed Z, 1995. "Forecasting electric energy consumption using neural networks," Energy Policy, Elsevier, vol. 23(12), pages 1097-1104, December.
    6. Ruma Talukdar & Nibedita Mahanta, 2023. "Forecasting of Domestic Electricity Consumption in Assam, India," International Journal of Energy Economics and Policy, Econjournals, vol. 13(5), pages 229-235, September.
    7. Jes s Garcia-Guiliany & Emiro De-la-hoz-Franco & Andr s-David Rodr guez-Toscano & Juan-David De-la-Hoz-Hern ndez & Hugo G. Hern ndez-Palma, 2020. "Multiple Linear Regression Model Applied to the Projection of Electricity Demand in Colombia," International Journal of Energy Economics and Policy, Econjournals, vol. 10(1), pages 419-422.
    8. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    9. Canova, Fabio & Hansen, Bruce E, 1995. "Are Seasonal Patterns Constant over Time? A Test for Seasonal Stability," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 237-252, July.
    10. Nitin Kumar Singh & Takuya Fukushima & Masaaki Nagahara, 2023. "Gradient Boosting Approach to Predict Energy-Saving Awareness of Households in Kitakyushu," Energies, MDPI, vol. 16(16), pages 1-10, August.
    11. Mohamed, Zaid & Bodger, Pat, 2005. "Forecasting electricity consumption in New Zealand using economic and demographic variables," Energy, Elsevier, vol. 30(10), pages 1833-1843.
    12. Bianco, Vincenzo & Manca, Oronzio & Nardini, Sergio, 2009. "Electricity consumption forecasting in Italy using linear regression models," Energy, Elsevier, vol. 34(9), pages 1413-1421.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ismail Shah & Hasnain Iftikhar & Sajid Ali, 2020. "Modeling and Forecasting Medium-Term Electricity Consumption Using Component Estimation Technique," Forecasting, MDPI, vol. 2(2), pages 1-17, May.
    2. Debnath, Kumar Biswajit & Mourshed, Monjur, 2018. "Forecasting methods in energy planning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 297-325.
    3. Wang, Shuai & Yu, Lean & Tang, Ling & Wang, Shouyang, 2011. "A novel seasonal decomposition based least squares support vector regression ensemble learning approach for hydropower consumption forecasting in China," Energy, Elsevier, vol. 36(11), pages 6542-6554.
    4. Ruma Talukdar & Nibedita Mahanta, 2023. "Forecasting of Domestic Electricity Consumption in Assam, India," International Journal of Energy Economics and Policy, Econjournals, vol. 13(5), pages 229-235, September.
    5. Velasquez, Carlos E. & Zocatelli, Matheus & Estanislau, Fidellis B.G.L. & Castro, Victor F., 2022. "Analysis of time series models for Brazilian electricity demand forecasting," Energy, Elsevier, vol. 247(C).
    6. Wang, Lin & Hu, Huanling & Ai, Xue-Yi & Liu, Hua, 2018. "Effective electricity energy consumption forecasting using echo state network improved by differential evolution algorithm," Energy, Elsevier, vol. 153(C), pages 801-815.
    7. Ardakani, F.J. & Ardehali, M.M., 2014. "Long-term electrical energy consumption forecasting for developing and developed economies based on different optimized models and historical data types," Energy, Elsevier, vol. 65(C), pages 452-461.
    8. Sun-Youn Shin & Han-Gyun Woo, 2022. "Energy Consumption Forecasting in Korea Using Machine Learning Algorithms," Energies, MDPI, vol. 15(13), pages 1-20, July.
    9. Kankal, Murat & AkpInar, Adem & Kömürcü, Murat Ihsan & Özsahin, Talat Sükrü, 2011. "Modeling and forecasting of Turkey's energy consumption using socio-economic and demographic variables," Applied Energy, Elsevier, vol. 88(5), pages 1927-1939, May.
    10. Steinbuks, Jevgenijs, 2019. "Assessing the accuracy of electricity production forecasts in developing countries," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1175-1185.
    11. Xiao, Liye & Wang, Jianzhou & Hou, Ru & Wu, Jie, 2015. "A combined model based on data pre-analysis and weight coefficients optimization for electrical load forecasting," Energy, Elsevier, vol. 82(C), pages 524-549.
    12. Zeng, Yu-Rong & Zeng, Yi & Choi, Beomjin & Wang, Lin, 2017. "Multifactor-influenced energy consumption forecasting using enhanced back-propagation neural network," Energy, Elsevier, vol. 127(C), pages 381-396.
    13. Wang, Qiang & Li, Shuyu & Li, Rongrong, 2018. "Forecasting energy demand in China and India: Using single-linear, hybrid-linear, and non-linear time series forecast techniques," Energy, Elsevier, vol. 161(C), pages 821-831.
    14. Suganthi, L. & Samuel, Anand A., 2012. "Energy models for demand forecasting—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1223-1240.
    15. Habeebur Rahman & Iniyan Selvarasan & Jahitha Begum A, 2018. "Short-Term Forecasting of Total Energy Consumption for India-A Black Box Based Approach," Energies, MDPI, vol. 11(12), pages 1-21, December.
    16. Hu, Junjie & López Cabrera, Brenda & Melzer, Awdesch, 2021. "Advanced statistical learning on short term load process forecasting," IRTG 1792 Discussion Papers 2021-020, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    17. Lim, Juin Yau & Safder, Usman & How, Bing Shen & Ifaei, Pouya & Yoo, Chang Kyoo, 2021. "Nationwide sustainable renewable energy and Power-to-X deployment planning in South Korea assisted with forecasting model," Applied Energy, Elsevier, vol. 283(C).
    18. A. Azadeh & M. Saberi & A. Gitiforouz, 2013. "An integrated fuzzy mathematical model and principal component analysis algorithm for forecasting uncertain trends of electricity consumption," Quality & Quantity: International Journal of Methodology, Springer, vol. 47(4), pages 2163-2176, June.
    19. Meng, Ming & Niu, Dongxiao, 2011. "Modeling CO2 emissions from fossil fuel combustion using the logistic equation," Energy, Elsevier, vol. 36(5), pages 3355-3359.
    20. Lin, Jiang & Xu Liu, & Gang He,, 2020. "Regional electricity demand and economic transition in China," Utilities Policy, Elsevier, vol. 64(C).

    More about this item

    Keywords

    Assam; Electricity Consumption; Forecasting; SARIMA;
    All these keywords.

    JEL classification:

    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • Q47 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy Forecasting

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eco:journ2:2024-05-40. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ilhan Ozturk (email available below). General contact details of provider: http://www.econjournals.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.