IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v32y2007i9p1670-1675.html
   My bibliography  Save this article

Grey prediction with rolling mechanism for electricity demand forecasting of Turkey

Author

Listed:
  • Akay, Diyar
  • Atak, Mehmet

Abstract

The need for energy supply, especially for electricity, has been increasing in the last two decades in Turkey. In addition, owing to the uncertain economic structure of the country, electricity consumption has a chaotic and nonlinear trend. Hence, electricity configuration planning and estimation has been the most critical issue of active concern for Turkey. The Turkish Ministry of Energy and Natural Resources (MENR) has officially carried out energy planning studies using the Model of Analysis of the Energy Demand (MAED). In this paper, Grey prediction with rolling mechanism (GPRM) approach is proposed to predict the Turkey's total and industrial electricity consumption. GPRM approach is used because of high prediction accuracy, applicability in the case of limited data situations and requirement of little computational effort. Results show that proposed approach estimates more accurate results than the results of MAED, and have explicit advantages over extant studies. Future projections have also been done for total and industrial sector, respectively.

Suggested Citation

  • Akay, Diyar & Atak, Mehmet, 2007. "Grey prediction with rolling mechanism for electricity demand forecasting of Turkey," Energy, Elsevier, vol. 32(9), pages 1670-1675.
  • Handle: RePEc:eee:energy:v:32:y:2007:i:9:p:1670-1675
    DOI: 10.1016/j.energy.2006.11.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544206003458
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2006.11.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tunc, Murat & Camdali, Unal & Parmaksizoglu, Cem, 2006. "Comparison of Turkey's electrical energy consumption and production with some European countries and optimization of future electrical power supply investments in Turkey," Energy Policy, Elsevier, vol. 34(1), pages 50-59, January.
    2. Yao, Albert W.L. & Chi, S.C. & Chen, C.K., 2005. "Development of an integrated Grey–fuzzy-based electricity management system for enterprises," Energy, Elsevier, vol. 30(15), pages 2759-2771.
    3. Jebaraj, S. & Iniyan, S., 2006. "A review of energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(4), pages 281-311, August.
    4. Sözen, Adnan & Arcaklioglu, Erol & Özkaymak, Mehmet, 2005. "Turkey's net energy consumption," Applied Energy, Elsevier, vol. 81(2), pages 209-221, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hamzacebi, Coskun, 2007. "Forecasting of Turkey's net electricity energy consumption on sectoral bases," Energy Policy, Elsevier, vol. 35(3), pages 2009-2016, March.
    2. Kucukali, Serhat & Baris, Kemal, 2010. "Turkey's short-term gross annual electricity demand forecast by fuzzy logic approach," Energy Policy, Elsevier, vol. 38(5), pages 2438-2445, May.
    3. Kankal, Murat & AkpInar, Adem & Kömürcü, Murat Ihsan & Özsahin, Talat Sükrü, 2011. "Modeling and forecasting of Turkey's energy consumption using socio-economic and demographic variables," Applied Energy, Elsevier, vol. 88(5), pages 1927-1939, May.
    4. Laha, Priyanka & Chakraborty, Basab, 2017. "Energy model – A tool for preventing energy dysfunction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 95-114.
    5. ToksarI, M. Duran, 2009. "Estimating the net electricity energy generation and demand using the ant colony optimization approach: Case of Turkey," Energy Policy, Elsevier, vol. 37(3), pages 1181-1187, March.
    6. Suganthi, L. & Samuel, Anand A., 2012. "Energy models for demand forecasting—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1223-1240.
    7. Nathalie Spittler & Ganna Gladkykh & Arnaud Diemer & Brynhildur Davidsdottir, 2019. "Understanding the Current Energy Paradigm and Energy System Models for More Sustainable Energy System Development," Post-Print hal-02127724, HAL.
    8. Pye, Steve & Sabio, Nagore & Strachan, Neil, 2015. "An integrated systematic analysis of uncertainties in UK energy transition pathways," Energy Policy, Elsevier, vol. 87(C), pages 673-684.
    9. Ba, Birome Holo & Prins, Christian & Prodhon, Caroline, 2016. "Models for optimization and performance evaluation of biomass supply chains: An Operations Research perspective," Renewable Energy, Elsevier, vol. 87(P2), pages 977-989.
    10. Liu, Wen & Hu, Weihao & Lund, Henrik & Chen, Zhe, 2013. "Electric vehicles and large-scale integration of wind power – The case of Inner Mongolia in China," Applied Energy, Elsevier, vol. 104(C), pages 445-456.
    11. Ghatrehsamani, Shirin & Ebrahimi, Rahim & Kazi, Salim Newaz & Badarudin Badry, Ahmad & Sadeghinezhad, Emad, 2016. "Optimization model of peach production relevant to input energies – Yield function in Chaharmahal va Bakhtiari province, Iran," Energy, Elsevier, vol. 99(C), pages 315-321.
    12. Yulei Xie & Linrui Wang & Guohe Huang & Dehong Xia & Ling Ji, 2018. "A Stochastic Inexact Robust Model for Regional Energy System Management and Emission Reduction Potential Analysis—A Case Study of Zibo City, China," Energies, MDPI, vol. 11(8), pages 1-24, August.
    13. Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    14. Larisa Vazhenina & Elena Magaril & Igor Mayburov, 2022. "Resource Conservation as the Main Factor in Increasing the Resource Efficiency of Russian Gas Companies," Resources, MDPI, vol. 11(12), pages 1-14, December.
    15. Després, Jacques & Hadjsaid, Nouredine & Criqui, Patrick & Noirot, Isabelle, 2015. "Modelling the impacts of variable renewable sources on the power sector: Reconsidering the typology of energy modelling tools," Energy, Elsevier, vol. 80(C), pages 486-495.
    16. Alexander Franz & Julia Rieck & Jürgen Zimmermann, 2019. "Fix-and-optimize procedures for solving the long-term unit commitment problem with pumped storages," Annals of Operations Research, Springer, vol. 274(1), pages 241-265, March.
    17. Choudhary, Ram Bilash & Ansari, Sarfaraz & Majumder, Mandira, 2021. "Recent advances on redox active composites of metal-organic framework and conducting polymers as pseudocapacitor electrode material," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    18. Jacques Després & Patrick Criqui & Silvana Mima & Nouredine Hadjsaid & Isabelle Noirot, 2014. "Variable renewable energies and storage development in long term energy modelling tools," Post-Print hal-01279467, HAL.
    19. Furlan, Claudia & de Oliveira, Amauri Pereira & Soares, Jacyra & Codato, Georgia & Escobedo, João Francisco, 2012. "The role of clouds in improving the regression model for hourly values of diffuse solar radiation," Applied Energy, Elsevier, vol. 92(C), pages 240-254.
    20. Yue, Xiufeng & Deane, J.P. & O'Gallachoir, Brian & Rogan, Fionn, 2020. "Identifying decarbonisation opportunities using marginal abatement cost curves and energy system scenario ensembles," Applied Energy, Elsevier, vol. 276(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:32:y:2007:i:9:p:1670-1675. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.