IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i11p1792-d822693.html
   My bibliography  Save this article

On Predictive Modeling Using a New Flexible Weibull Distribution and Machine Learning Approach: Analyzing the COVID-19 Data

Author

Listed:
  • Zubair Ahmad

    (Department of Statistics, Yazd University, Yazd P.O. Box 89175-741, Iran)

  • Zahra Almaspoor

    (Department of Statistics, Yazd University, Yazd P.O. Box 89175-741, Iran)

  • Faridoon Khan

    (PIDE School of Economics, Islamabad 44000, Pakistan)

  • Mahmoud El-Morshedy

    (Department of Mathematics, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
    Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt)

Abstract

Predicting and modeling time-to-events data is a crucial and interesting research area. For modeling and predicting such types of data, numerous statistical models have been suggested and implemented. This study introduces a new statistical model, namely, a new modified flexible Weibull extension (NMFWE) distribution for modeling the mortality rate of COVID-19 patients. The introduced model is obtained by modifying the flexible Weibull extension model. The maximum likelihood estimators of the NMFWE model are obtained. The evaluation of the estimators of the NMFWE model is assessed in a simulation study. The flexibility and applicability of the NMFWE model are established by taking two datasets representing the mortality rates of COVID-19-infected persons in Mexico and Canada. For predictive modeling, we consider two pure statistical models and two machine learning (ML) algorithms. The pure statistical models include the autoregressive moving average (ARMA) and non-parametric autoregressive moving average (NP-ARMA), and the ML algorithms include neural network autoregression (NNAR) and support vector regression (SVR). To evaluate their forecasting performance, three standard measures of accuracy, namely, root mean square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE) are calculated. The findings demonstrate that ML algorithms are very effective at predicting the mortality rate data.

Suggested Citation

  • Zubair Ahmad & Zahra Almaspoor & Faridoon Khan & Mahmoud El-Morshedy, 2022. "On Predictive Modeling Using a New Flexible Weibull Distribution and Machine Learning Approach: Analyzing the COVID-19 Data," Mathematics, MDPI, vol. 10(11), pages 1-26, May.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:11:p:1792-:d:822693
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/11/1792/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/11/1792/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bebbington, Mark & Lai, Chin-Diew & Zitikis, RiÄ ardas, 2007. "A flexible Weibull extension," Reliability Engineering and System Safety, Elsevier, vol. 92(6), pages 719-726.
    2. Ismail Shah & Hasnain Iftikhar & Sajid Ali, 2020. "Modeling and Forecasting Medium-Term Electricity Consumption Using Component Estimation Technique," Forecasting, MDPI, vol. 2(2), pages 1-17, May.
    3. Zubair Ahmad & Eisa Mahmoudi & Morad Alizadeh & Rasool Roozegar & Ahmed Z. Afify & Markos Koutras, 2021. "The Exponential T-X Family of Distributions: Properties and an Application to Insurance Data," Journal of Mathematics, Hindawi, vol. 2021, pages 1-18, May.
    4. Singhal, Amit & Singh, Pushpendra & Lall, Brejesh & Joshi, Shiv Dutt, 2020. "Modeling and prediction of COVID-19 pandemic using Gaussian mixture model," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    5. Bhati, Deepesh & Ravi, Sreenivasan, 2018. "On generalized log-Moyal distribution: A new heavy tailed size distribution," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 247-259.
    6. Qi, Min & Zhang, Guoqiang Peter, 2001. "An investigation of model selection criteria for neural network time series forecasting," European Journal of Operational Research, Elsevier, vol. 132(3), pages 666-680, August.
    7. Emrah Altun & M El-Morshedy & M S Eliwa, 2021. "A new regression model for bounded response variable: An alternative to the beta and unit-Lindley regression models," PLOS ONE, Public Library of Science, vol. 16(1), pages 1-15, January.
    8. Rashad M. EL-Sagheer & Mohamed S. Eliwa & Khaled M. Alqahtani & Mahmoud EL-Morshedy & Ali Sajid, 2022. "Asymmetric Randomly Censored Mortality Distribution: Bayesian Framework and Parametric Bootstrap with Application to COVID-19 Data," Journal of Mathematics, Hindawi, vol. 2022, pages 1-14, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yas Al-Hadeethi & Intesar F. El Ramley & Hiba Mohammed & Nada M. Bedaiwi & Abeer Z. Barasheed, 2024. "A Novel Computational Instrument Based on a Universal Mixture Density Network with a Gaussian Mixture Model as a Backbone for Predicting COVID-19 Variants’ Distributions," Mathematics, MDPI, vol. 12(8), pages 1-24, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mustafa Ç. Korkmaz & Emrah Altun & Morad Alizadeh & M. El-Morshedy, 2021. "The Log Exponential-Power Distribution: Properties, Estimations and Quantile Regression Model," Mathematics, MDPI, vol. 9(21), pages 1-19, October.
    2. Linying Yang & Teng Zhang & Peter Glynn & David Scheinker, 2021. "The development and deployment of a model for hospital-level COVID-19 associated patient demand intervals from consistent estimators (DICE)," Health Care Management Science, Springer, vol. 24(2), pages 375-401, June.
    3. Neveka M. Olmos & Emilio Gómez-Déniz & Osvaldo Venegas, 2022. "The Heavy-Tailed Gleser Model: Properties, Estimation, and Applications," Mathematics, MDPI, vol. 10(23), pages 1-16, December.
    4. Crone, Sven F. & Hibon, Michèle & Nikolopoulos, Konstantinos, 2011. "Advances in forecasting with neural networks? Empirical evidence from the NN3 competition on time series prediction," International Journal of Forecasting, Elsevier, vol. 27(3), pages 635-660.
    5. Broderick Oluyede & Thatayaone Moakofi, 2023. "The Gamma-Topp-Leone-Type II-Exponentiated Half Logistic-G Family of Distributions with Applications," Stats, MDPI, vol. 6(2), pages 1-28, June.
    6. Braglia, Marcello & Carmignani, Gionata & Frosolini, Marco & Zammori, Francesco, 2012. "Data classification and MTBF prediction with a multivariate analysis approach," Reliability Engineering and System Safety, Elsevier, vol. 97(1), pages 27-35.
    7. Hadi Saboori & Ghobad Barmalzan & Seyyed Masih Ayat, 2020. "Generalized Modified Inverse Weibull Distribution: Its Properties and Applications," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 82(2), pages 247-269, November.
    8. Alessandro Bosisio & Matteo Moncecchi & Andrea Morotti & Marco Merlo, 2021. "Machine Learning and GIS Approach for Electrical Load Assessment to Increase Distribution Networks Resilience," Energies, MDPI, vol. 14(14), pages 1-23, July.
    9. Muhammad Ahmar & Fahad Ali & Yuexiang Jiang & Mamdooh Alwetaishi & Sherif S. M. Ghoneim, 2022. "Households’ Energy Choices in Rural Pakistan," Energies, MDPI, vol. 15(9), pages 1-23, April.
    10. Gauss M. Cordeiro & Giovana O. Silva & Edwin M. M. Ortega, 2016. "An extended-G geometric family," Journal of Statistical Distributions and Applications, Springer, vol. 3(1), pages 1-16, December.
    11. Bebbington, Mark & Lai, Chin-Diew & Zitikis, RiÄ ardas, 2009. "Balancing burn-in and mission times in environments with catastrophic and repairable failures," Reliability Engineering and System Safety, Elsevier, vol. 94(8), pages 1314-1321.
    12. Emil Kraft & Dogan Keles & Wolf Fichtner, 2020. "Modeling of frequency containment reserve prices with econometrics and artificial intelligence," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(8), pages 1179-1197, December.
    13. Nebojsa Bacanin & Catalin Stoean & Miodrag Zivkovic & Miomir Rakic & Roma Strulak-Wójcikiewicz & Ruxandra Stoean, 2023. "On the Benefits of Using Metaheuristics in the Hyperparameter Tuning of Deep Learning Models for Energy Load Forecasting," Energies, MDPI, vol. 16(3), pages 1-21, February.
    14. Nazila Pourhaji & Mohammad Asadpour & Ali Ahmadian & Ali Elkamel, 2022. "The Investigation of Monthly/Seasonal Data Clustering Impact on Short-Term Electricity Price Forecasting Accuracy: Ontario Province Case Study," Sustainability, MDPI, vol. 14(5), pages 1-14, March.
    15. Gupta, Ashutosh & Mukherjee, Bhaswati & Upadhyay, S.K., 2008. "Weibull extension model: A Bayes study using Markov chain Monte Carlo simulation," Reliability Engineering and System Safety, Elsevier, vol. 93(10), pages 1434-1443.
    16. Talha Arslan, 2021. "An α -Monotone Generalized Log-Moyal Distribution with Applications to Environmental Data," Mathematics, MDPI, vol. 9(12), pages 1-18, June.
    17. Hasnain Iftikhar & Josue E. Turpo-Chaparro & Paulo Canas Rodrigues & Javier Linkolk López-Gonzales, 2023. "Forecasting Day-Ahead Electricity Prices for the Italian Electricity Market Using a New Decomposition—Combination Technique," Energies, MDPI, vol. 16(18), pages 1-23, September.
    18. Devendra Kumar & Neetu Jain & Mazen Nassar & Osama Eraki Abo-Kasem, 2021. "Parameter Estimation for the Exponentiated Kumaraswamy-Power Function Distribution Based on Order Statistics with Application," Annals of Data Science, Springer, vol. 8(4), pages 785-811, December.
    19. Shi, Yue & Punzo, Antonio & Otneim, Håkon & Maruotti, Antonello, 2023. "Hidden semi-Markov models for rainfall-related insurance claims," Discussion Papers 2023/17, Norwegian School of Economics, Department of Business and Management Science.
    20. Lazrak, Amine & Boudehenn, François & Bonnot, Sylvain & Fraisse, Gilles & Leconte, Antoine & Papillon, Philippe & Souyri, Bernard, 2016. "Development of a dynamic artificial neural network model of an absorption chiller and its experimental validation," Renewable Energy, Elsevier, vol. 86(C), pages 1009-1022.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:11:p:1792-:d:822693. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.