IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v7y2014i11p7773-7793d42615.html
   My bibliography  Save this article

System Integration of the Horizontal-Axis Wind Turbine: The Design of Turbine Blades with an Axial-Flux Permanent Magnet Generator

Author

Listed:
  • Chi-Jeng Bai

    (Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 70101, Taiwan)

  • Wei-Cheng Wang

    (Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 70101, Taiwan
    Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan 70101, Taiwan)

  • Po-Wei Chen

    (Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 70101, Taiwan)

  • Wen-Tong Chong

    (Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
    Centre for Energy Sciences, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia)

Abstract

In designing a horizontal-axis wind turbine (HAWT) blade, system integration between the blade design and the performance test of the generator is important. This study shows the aerodynamic design of a HAWT blade operating with an axial-flux permanent magnet (AFPM) generator. An experimental platform was built to measure the performance curves of the AFPM generator for the purpose of designing the turbine blade. An in-house simulation code was developed based on the blade element momentum (BEM) theory and was used to lay out the geometric shape of the turbine blade, including the pitch angle and chord length at each section. This simulation code was combined with the two-dimensional (2D) airfoil data for predicting the aerodynamic performance of the designed blades. In addition, wind tunnel experiments were performed to verify the simulation results for the various operating conditions. By varying the rotational speeds at four wind speeds, the experimental and simulation results for the mechanical torques and powers presented good agreement. The mechanical power of the system, which maximizes at the best operating region, provided significant information for designing the HAWT blade.

Suggested Citation

  • Chi-Jeng Bai & Wei-Cheng Wang & Po-Wei Chen & Wen-Tong Chong, 2014. "System Integration of the Horizontal-Axis Wind Turbine: The Design of Turbine Blades with an Axial-Flux Permanent Magnet Generator," Energies, MDPI, vol. 7(11), pages 1-21, November.
  • Handle: RePEc:gam:jeners:v:7:y:2014:i:11:p:7773-7793:d:42615
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/7/11/7773/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/7/11/7773/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. McKenna, R. & Hollnaicher, S. & Fichtner, W., 2014. "Cost-potential curves for onshore wind energy: A high-resolution analysis for Germany," Applied Energy, Elsevier, vol. 115(C), pages 103-115.
    2. Fei-Bin Hsiao & Chi-Jeng Bai & Wen-Tong Chong, 2013. "The Performance Test of Three Different Horizontal Axis Wind Turbine (HAWT) Blade Shapes Using Experimental and Numerical Methods," Energies, MDPI, vol. 6(6), pages 1-20, June.
    3. Song, Zhanfeng & Xia, Changliang & Shi, Tingna, 2010. "Assessing transient response of DFIG based wind turbines during voltage dips regarding main flux saturation and rotor deep-bar effect," Applied Energy, Elsevier, vol. 87(10), pages 3283-3293, October.
    4. Brahmi, Jemaa & Krichen, Lotfi & Ouali, Abderrazak, 2009. "A comparative study between three sensorless control strategies for PMSG in wind energy conversion system," Applied Energy, Elsevier, vol. 86(9), pages 1565-1573, September.
    5. Goundar, Jai N. & Ahmed, M. Rafiuddin, 2013. "Design of a horizontal axis tidal current turbine," Applied Energy, Elsevier, vol. 111(C), pages 161-174.
    6. Hirahara, Hiroyuki & Hossain, M. Zakir & Kawahashi, Masaaki & Nonomura, Yoshitami, 2005. "Testing basic performance of a very small wind turbine designed for multi-purposes," Renewable Energy, Elsevier, vol. 30(8), pages 1279-1297.
    7. Yang, Hongxing & Wei, Zhou & Chengzhi, Lou, 2009. "Optimal design and techno-economic analysis of a hybrid solar-wind power generation system," Applied Energy, Elsevier, vol. 86(2), pages 163-169, February.
    8. Lee, Ju Hyun & Park, Sunho & Kim, Dong Hwan & Rhee, Shin Hyung & Kim, Moon-Chan, 2012. "Computational methods for performance analysis of horizontal axis tidal stream turbines," Applied Energy, Elsevier, vol. 98(C), pages 512-523.
    9. Dai, J.C. & Hu, Y.P. & Liu, D.S. & Long, X., 2011. "Aerodynamic loads calculation and analysis for large scale wind turbine based on combining BEM modified theory with dynamic stall model," Renewable Energy, Elsevier, vol. 36(3), pages 1095-1104.
    10. Carranza, O. & Figueres, E. & Garcerá, G. & Gonzalez-Medina, R., 2013. "Analysis of the control structure of wind energy generation systems based on a permanent magnet synchronous generator," Applied Energy, Elsevier, vol. 103(C), pages 522-538.
    11. González, L.G. & Figueres, E. & Garcerá, G. & Carranza, O., 2010. "Maximum-power-point tracking with reduced mechanical stress applied to wind-energy-conversion-systems," Applied Energy, Elsevier, vol. 87(7), pages 2304-2312, July.
    12. Amrouche, Badia & Guessoum, Abderrezak & Belhamel, Maiouf, 2012. "A simple behavioural model for solar module electric characteristics based on the first order system step response for MPPT study and comparison," Applied Energy, Elsevier, vol. 91(1), pages 395-404.
    13. Lanzafame, R. & Messina, M., 2007. "Fluid dynamics wind turbine design: Critical analysis, optimization and application of BEM theory," Renewable Energy, Elsevier, vol. 32(14), pages 2291-2305.
    14. Kishinami, Koki & Taniguchi, Hiroshi & Suzuki, Jun & Ibano, Hiroshi & Kazunou, Takashi & Turuhami, Masato, 2005. "Theoretical and experimental study on the aerodynamic characteristics of a horizontal axis wind turbine," Energy, Elsevier, vol. 30(11), pages 2089-2100.
    15. Madlener, Reinhard & Latz, Jochen, 2013. "Economics of centralized and decentralized compressed air energy storage for enhanced grid integration of wind power," Applied Energy, Elsevier, vol. 101(C), pages 299-309.
    16. Arroyo, A. & Manana, M. & Gomez, C. & Fernandez, I. & Delgado, F. & Zobaa, Ahmed F., 2013. "A methodology for the low-cost optimisation of small wind turbine performance," Applied Energy, Elsevier, vol. 104(C), pages 1-9.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yunkai Huang & Baocheng Guo & Ahmed Hemeida & Peter Sergeant, 2016. "Analytical Modeling of Static Eccentricities in Axial Flux Permanent-Magnet Machines with Concentrated Windings," Energies, MDPI, vol. 9(11), pages 1-19, October.
    2. Huang, Chang-Chi & Bai, Chi-Jeng & Shiah, Y.C. & Chen, Yu-Jen, 2016. "Optimal design of protuberant blades for small variable-speed horizontal axis wind turbine-experiments and simulations," Energy, Elsevier, vol. 115(P1), pages 1156-1167.
    3. Venkaiah, P. & Sarkar, Bikash K., 2020. "Hydraulically actuated horizontal axis wind turbine pitch control by model free adaptive controller," Renewable Energy, Elsevier, vol. 147(P1), pages 55-68.
    4. Bai, Chi-Jeng & Wang, Wei-Cheng, 2016. "Review of computational and experimental approaches to analysis of aerodynamic performance in horizontal-axis wind turbines (HAWTs)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 506-519.
    5. Yong Ma & Aiming Zhang & Lele Yang & Chao Hu & Yue Bai, 2019. "Investigation on Optimization Design of Offshore Wind Turbine Blades based on Particle Swarm Optimization," Energies, MDPI, vol. 12(10), pages 1-18, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bai, Chi-Jeng & Wang, Wei-Cheng, 2016. "Review of computational and experimental approaches to analysis of aerodynamic performance in horizontal-axis wind turbines (HAWTs)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 506-519.
    2. Dai, Juchuan & Yang, Xin & Hu, Wei & Wen, Li & Tan, Yayi, 2018. "Effect investigation of yaw on wind turbine performance based on SCADA data," Energy, Elsevier, vol. 149(C), pages 684-696.
    3. Sedaghat, Ahmad & El Haj Assad, M. & Gaith, Mohamed, 2014. "Aerodynamics performance of continuously variable speed horizontal axis wind turbine with optimal blades," Energy, Elsevier, vol. 77(C), pages 752-759.
    4. Melício, R. & Mendes, V.M.F. & Catalão, J.P.S., 2011. "Transient analysis of variable-speed wind turbines at wind speed disturbances and a pitch control malfunction," Applied Energy, Elsevier, vol. 88(4), pages 1322-1330, April.
    5. Xu, Quan-kun & Liu, Hong-wei & Lin, Yong-gang & Yin, Xiu-xing & Li, Wei & Gu, Ya-jing, 2015. "Development and experiment of a 60 kW horizontal-axis marine current power system," Energy, Elsevier, vol. 88(C), pages 149-156.
    6. Belmokhtar, K. & Doumbia, M.L. & Agbossou, K., 2014. "Novel fuzzy logic based sensorless maximum power point tracking strategy for wind turbine systems driven DFIG (doubly-fed induction generator)," Energy, Elsevier, vol. 76(C), pages 679-693.
    7. Imraan, Mustahib & Sharma, Rajnish N. & Flay, Richard G.J., 2013. "Wind tunnel testing of a wind turbine with telescopic blades: The influence of blade extension," Energy, Elsevier, vol. 53(C), pages 22-32.
    8. Fei-Bin Hsiao & Chi-Jeng Bai & Wen-Tong Chong, 2013. "The Performance Test of Three Different Horizontal Axis Wind Turbine (HAWT) Blade Shapes Using Experimental and Numerical Methods," Energies, MDPI, vol. 6(6), pages 1-20, June.
    9. Ganjefar, Soheil & Mohammadi, Ali, 2016. "Variable speed wind turbines with maximum power extraction using singular perturbation theory," Energy, Elsevier, vol. 106(C), pages 510-519.
    10. Dallatu Abbas Umar & Chong Tak Yaw & Siaw Paw Koh & Sieh Kiong Tiong & Ammar Ahmed Alkahtani & Talal Yusaf, 2022. "Design and Optimization of a Small-Scale Horizontal Axis Wind Turbine Blade for Energy Harvesting at Low Wind Profile Areas," Energies, MDPI, vol. 15(9), pages 1-22, April.
    11. Małgorzata Stępień & Michał Kulak & Krzysztof Jóźwik, 2020. "“Fast Track” Analysis of Small Wind Turbine Blade Performance," Energies, MDPI, vol. 13(21), pages 1-16, November.
    12. Marina Barbarić & Zvonimir Guzović, 2020. "Investigation of the Possibilities to Improve Hydrodynamic Performances of Micro-Hydrokinetic Turbines," Energies, MDPI, vol. 13(17), pages 1-20, September.
    13. Yang, P. & Xiang, J. & Fang, F. & Pain, C.C., 2019. "A fidelity fluid-structure interaction model for vertical axis tidal turbines in turbulence flows," Applied Energy, Elsevier, vol. 236(C), pages 465-477.
    14. Xie, Wei & Zeng, Pan & Lei, Liping, 2015. "Wind tunnel experiments for innovative pitch regulated blade of horizontal axis wind turbine," Energy, Elsevier, vol. 91(C), pages 1070-1080.
    15. Ramin Alipour & Roozbeh Alipour & Seyed Saeid Rahimian Koloor & Michal Petrů & Seyed Alireza Ghazanfari, 2020. "On the Performance of Small-Scale Horizontal Axis Tidal Current Turbines. Part 1: One Single Turbine," Sustainability, MDPI, vol. 12(15), pages 1-25, July.
    16. Xu, Jian & Wang, Longyan & Luo, Zhaohui & Wang, Zilu & Zhang, Bowen & Yuan, Jianping & Tan, Andy C.C., 2024. "Deep learning enhanced fluid-structure interaction analysis for composite tidal turbine blades," Energy, Elsevier, vol. 296(C).
    17. Dai, Juchuan & Li, Mimi & Chen, Huanguo & He, Tao & Zhang, Fan, 2022. "Progress and challenges on blade load research of large-scale wind turbines," Renewable Energy, Elsevier, vol. 196(C), pages 482-496.
    18. Dong, Yongjun & Guo, Jingfu & Chen, Jianmei & Sun, Chao & Zhu, Wanqiang & Chen, Liwei & Zhang, Xueming, 2021. "Development of a 300 kW horizontal-axis tidal stream energy conversion system with adaptive variable-pitch turbine and direct-drive PMSG," Energy, Elsevier, vol. 226(C).
    19. Lanzafame, R. & Messina, M., 2010. "Power curve control in micro wind turbine design," Energy, Elsevier, vol. 35(2), pages 556-561.
    20. Kabalcı, Ersan, 2018. "An islanded hybrid microgrid design with decentralized DC and AC subgrid controllers," Energy, Elsevier, vol. 153(C), pages 185-199.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:7:y:2014:i:11:p:7773-7793:d:42615. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.