IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i21p5767-d439738.html
   My bibliography  Save this article

“Fast Track” Analysis of Small Wind Turbine Blade Performance

Author

Listed:
  • Małgorzata Stępień

    (Institute of Turbomachinery, Lodz University of Technology, 90-924 Lodz, Poland)

  • Michał Kulak

    (Institute of Turbomachinery, Lodz University of Technology, 90-924 Lodz, Poland)

  • Krzysztof Jóźwik

    (Institute of Turbomachinery, Lodz University of Technology, 90-924 Lodz, Poland)

Abstract

Small wind turbines (SWTs) can be significantly sensitive to variances in the blade geometry shape when their operation in relatively low ranges of Reynolds numbers is considered. An SWT case study, where an existing wind turbine prototype was equipped with a redesigned blade set, to increase its aerodynamic efficiency, is presented. The geometry modification process was targeted at maximizing the turbine power coefficient in the presumed point of low Reynolds operation. The applied design and analysis methods included practical implementation of previously established “Fast Track” procedure for wind turbine development. A newly prepared blade geometry and a reference blade set were examined numerically and experimentally. Selected design and assessment processes were supposed to be low resource demanding, making them possibly highly applicable in renewable energy industry. Therefore, the numerical analysis of both geometries was based on BEM (blade element momentum theory) equations. The research was expanded by model validation in small-scale wind tunnel tests to provide detailed information on BEM data reliability in comparison to the results of the experiment. The small-scale analysis, performed in Reynolds numbers below 100,000, provided information sufficient for evaluation of the redesigned blade. Implementation of the geometry obtained throughout the proposed procedure increased the rotor’s maximum power coefficient by 10%.

Suggested Citation

  • Małgorzata Stępień & Michał Kulak & Krzysztof Jóźwik, 2020. "“Fast Track” Analysis of Small Wind Turbine Blade Performance," Energies, MDPI, vol. 13(21), pages 1-16, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5767-:d:439738
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/21/5767/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/21/5767/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tummala, Abhishiktha & Velamati, Ratna Kishore & Sinha, Dipankur Kumar & Indraja, V. & Krishna, V. Hari, 2016. "A review on small scale wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1351-1371.
    2. Peter J. Schubel & Richard J. Crossley, 2012. "Wind Turbine Blade Design," Energies, MDPI, vol. 5(9), pages 1-25, September.
    3. Kishinami, Koki & Taniguchi, Hiroshi & Suzuki, Jun & Ibano, Hiroshi & Kazunou, Takashi & Turuhami, Masato, 2005. "Theoretical and experimental study on the aerodynamic characteristics of a horizontal axis wind turbine," Energy, Elsevier, vol. 30(11), pages 2089-2100.
    4. Fei-Bin Hsiao & Chi-Jeng Bai & Wen-Tong Chong, 2013. "The Performance Test of Three Different Horizontal Axis Wind Turbine (HAWT) Blade Shapes Using Experimental and Numerical Methods," Energies, MDPI, vol. 6(6), pages 1-20, June.
    5. Michal Lipian & Michal Kulak & Malgorzata Stepien, 2019. "Fast Track Integration of Computational Methods with Experiments in Small Wind Turbine Development," Energies, MDPI, vol. 12(9), pages 1-13, April.
    6. Lipian, Michal & Dobrev, Ivan & Karczewski, Maciej & Massouh, Fawaz & Jozwik, Krzysztof, 2019. "Small wind turbine augmentation: Experimental investigations of shrouded- and twin-rotor wind turbine systems," Energy, Elsevier, vol. 186(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali, Qazi Shahzad & Kim, Man-Hoe, 2021. "Design and performance analysis of an airborne wind turbine for high-altitude energy harvesting," Energy, Elsevier, vol. 230(C).
    2. Didane, Djamal Hissein & Rosly, Nurhayati & Zulkafli, Mohd Fadhli & Shamsudin, Syariful Syafiq, 2018. "Performance evaluation of a novel vertical axis wind turbine with coaxial contra-rotating concept," Renewable Energy, Elsevier, vol. 115(C), pages 353-361.
    3. Momeni, Farhang & Sabzpoushan, Seyedali & Valizadeh, Reza & Morad, Mohammad Reza & Liu, Xun & Ni, Jun, 2019. "Plant leaf-mimetic smart wind turbine blades by 4D printing," Renewable Energy, Elsevier, vol. 130(C), pages 329-351.
    4. Marina Barbarić & Zvonimir Guzović, 2020. "Investigation of the Possibilities to Improve Hydrodynamic Performances of Micro-Hydrokinetic Turbines," Energies, MDPI, vol. 13(17), pages 1-20, September.
    5. Murthy, K.S.R. & Rahi, O.P., 2017. "A comprehensive review of wind resource assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1320-1342.
    6. Justyna Zalewska & Krzysztof Damaziak & Jerzy Malachowski, 2021. "An Energy Efficiency Estimation Procedure for Small Wind Turbines at Chosen Locations in Poland," Energies, MDPI, vol. 14(12), pages 1-18, June.
    7. Michal Lipian & Pawel Czapski & Damian Obidowski, 2020. "Fluid–Structure Interaction Numerical Analysis of a Small, Urban Wind Turbine Blade," Energies, MDPI, vol. 13(7), pages 1-15, April.
    8. Bai, Chi-Jeng & Wang, Wei-Cheng, 2016. "Review of computational and experimental approaches to analysis of aerodynamic performance in horizontal-axis wind turbines (HAWTs)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 506-519.
    9. Chi-Jeng Bai & Wei-Cheng Wang & Po-Wei Chen & Wen-Tong Chong, 2014. "System Integration of the Horizontal-Axis Wind Turbine: The Design of Turbine Blades with an Axial-Flux Permanent Magnet Generator," Energies, MDPI, vol. 7(11), pages 1-21, November.
    10. Alfredo Alcayde & Quetzalcoatl Hernandez-Escobedo & David Muñoz-Rodríguez & Alberto-Jesus Perea-Moreno, 2022. "Worldwide Research Trends on Optimizing Wind Turbine Efficiency," Energies, MDPI, vol. 15(18), pages 1-7, September.
    11. Kaewniam, Panida & Cao, Maosen & Alkayem, Nizar Faisal & Li, Dayang & Manoach, Emil, 2022. "Recent advances in damage detection of wind turbine blades: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    12. Škvorc, Petar & Kozmar, Hrvoje, 2021. "Wind energy harnessing on tall buildings in urban environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    13. Nallapaneni Manoj Kumar & Aneesh A. Chand & Maria Malvoni & Kushal A. Prasad & Kabir A. Mamun & F.R. Islam & Shauhrat S. Chopra, 2020. "Distributed Energy Resources and the Application of AI, IoT, and Blockchain in Smart Grids," Energies, MDPI, vol. 13(21), pages 1-42, November.
    14. Bao, Mupeng & Xie, Yudong & Zhang, Xinbiao & Ju, Jinyong & Wang, Yong, 2023. "Performance improvement of a control valve with energy harvesting," Energy, Elsevier, vol. 263(PC).
    15. Rocha, P. A. Costa & Rocha, H. H. Barbosa & Carneiro, F. O. Moura & da Silva, M. E. Vieira & de Andrade, C. Freitas, 2016. "A case study on the calibration of the k–ω SST (shear stress transport) turbulence model for small scale wind turbines designed with cambered and symmetrical airfoils," Energy, Elsevier, vol. 97(C), pages 144-150.
    16. Kuang, Limin & Su, Jie & Chen, Yaoran & Han, Zhaolong & Zhou, Dai & Zhang, Kai & Zhao, Yongsheng & Bao, Yan, 2022. "Wind-capture-accelerate device for performance improvement of vertical-axis wind turbines: External diffuser system," Energy, Elsevier, vol. 239(PB).
    17. Michał Pacholczyk & Dariusz Karkosiński, 2020. "Parametric Study on a Performance of a Small Counter-Rotating Wind Turbine," Energies, MDPI, vol. 13(15), pages 1-17, July.
    18. Mintra Trongtorkarn & Thanansak Theppaya & Kuaanan Techato & Montri Luengchavanon & Chainuson Kasagepongsarn, 2021. "Relationship between Starting Torque and Thermal Behaviour for a Permanent Magnet Synchronous Generator (PMSG) Applied with Vertical Axis Wind Turbine (VAWT)," Sustainability, MDPI, vol. 13(16), pages 1-13, August.
    19. Wang, Junlei & Geng, Linfeng & Ding, Lin & Zhu, Hongjun & Yurchenko, Daniil, 2020. "The state-of-the-art review on energy harvesting from flow-induced vibrations," Applied Energy, Elsevier, vol. 267(C).
    20. Pagnini, Luisa & Piccardo, Giuseppe & Repetto, Maria Pia, 2018. "Full scale behavior of a small size vertical axis wind turbine," Renewable Energy, Elsevier, vol. 127(C), pages 41-55.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5767-:d:439738. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.