IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i9p3033-d798535.html
   My bibliography  Save this article

Design and Optimization of a Small-Scale Horizontal Axis Wind Turbine Blade for Energy Harvesting at Low Wind Profile Areas

Author

Listed:
  • Dallatu Abbas Umar

    (Department of Electrical and Electronics Engineering, Universiti Tenaga Nasional (The National Energy University), Jalan Ikram-Uniten, Kajang 43000, Malaysia
    Department of Physics, Faculty of Science, Kaduna State University, Tafawa Balewa Way, PMB 2339, Kaduna 800283, Nigeria)

  • Chong Tak Yaw

    (Institute of Sustainable Energy, Universiti Tenaga Nasional (The National Energy University), Jalan Ikram-Uniten, Kajang 43000, Malaysia)

  • Siaw Paw Koh

    (Institute of Sustainable Energy, Universiti Tenaga Nasional (The National Energy University), Jalan Ikram-Uniten, Kajang 43000, Malaysia)

  • Sieh Kiong Tiong

    (Institute of Sustainable Energy, Universiti Tenaga Nasional (The National Energy University), Jalan Ikram-Uniten, Kajang 43000, Malaysia)

  • Ammar Ahmed Alkahtani

    (Institute of Sustainable Energy, Universiti Tenaga Nasional (The National Energy University), Jalan Ikram-Uniten, Kajang 43000, Malaysia)

  • Talal Yusaf

    (School of Engineering and Technology, Central Queensland University, Brisbane, QLD 4009, Australia)

Abstract

Wind turbine blades perform the most important function in the wind energy conversion process. It plays the most vital role of absorbing the kinetic energy of the wind, and converting it to mechanical energy before it is transformed into electrical energy by generators. In this work, National Advisory Committee for Aeronautics (NACA) 4412 and SG6043 airfoils were selected to design a small horizontal axis variable speed wind turbine blade for harvesting efficient energy from low wind speed areas. Due to the low wind profile of the targeted area, a blade of one-meter radius was considered in this study. To attain the set objectives of fast starting time and generate more torque and power at low wind speeds, optimization was carryout by varying Reynolds numbers (Re) on tip speed ratios (TSR) values of 4, 5, and 6. The blade element momentum (BEM) method was developed in MATLAB programming code to iteratively find the best twist and chord distributions along the one-meter blade length for each Re and tip speed ratio (TSR) value. To further enhance the blade performance, the twist and chord distributions were transferred to Q-blade software, where simulations of the power coefficients (Cp) were performed and further optimized by varying the angles of attack. The highest power coefficients values of 0.42, 0.43, and 0.44 were recorded with NACA 4412 rotor blades, and 0.43, 0.44, and 0.45 with SG6043 rotor blades. At the Re of 3.0 × 10 5 , the blades were able to harvest maximum power of 144.73 watts (W), 159.69 W, and 201.04 W with the NACA 4412 and 213.15 W, 226.44 W, 245.09 W with the SG6043 at the TSR of 4, 5, and 6 respectively. The lowest cut-in speed of 1.80 m/s and 1.70 m/s were achieved with NACA 4412 and SG6043 airfoils at TSR 4. At a low wind speed of 4 m/s, the blades were able to harness an efficient power of 79.3. W and 80.10 W with both rotor blades at the TSR 4 and 6 accordingly.

Suggested Citation

  • Dallatu Abbas Umar & Chong Tak Yaw & Siaw Paw Koh & Sieh Kiong Tiong & Ammar Ahmed Alkahtani & Talal Yusaf, 2022. "Design and Optimization of a Small-Scale Horizontal Axis Wind Turbine Blade for Energy Harvesting at Low Wind Profile Areas," Energies, MDPI, vol. 15(9), pages 1-22, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3033-:d:798535
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/9/3033/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/9/3033/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Singh, Ronit K. & Ahmed, M. Rafiuddin, 2013. "Blade design and performance testing of a small wind turbine rotor for low wind speed applications," Renewable Energy, Elsevier, vol. 50(C), pages 812-819.
    2. Fei-Bin Hsiao & Chi-Jeng Bai & Wen-Tong Chong, 2013. "The Performance Test of Three Different Horizontal Axis Wind Turbine (HAWT) Blade Shapes Using Experimental and Numerical Methods," Energies, MDPI, vol. 6(6), pages 1-20, June.
    3. Akour, Salih N. & Al-Heymari, Mohammed & Ahmed, Talha & Khalil, Kamel Ali, 2018. "Experimental and theoretical investigation of micro wind turbine for low wind speed regions," Renewable Energy, Elsevier, vol. 116(PA), pages 215-223.
    4. Chehouri, Adam & Younes, Rafic & Ilinca, Adrian & Perron, Jean, 2015. "Review of performance optimization techniques applied to wind turbines," Applied Energy, Elsevier, vol. 142(C), pages 361-388.
    5. Tan Woan Wen & C Palanichamy & Gobbi Ramasamy, 2019. "Small Wind Turbines as Partial Solution for Energy Sustainability of Malaysia," International Journal of Energy Economics and Policy, Econjournals, vol. 9(2), pages 257-266.
    6. Shafiqur Rehman & Md. Mahbub Alam & Luai M. Alhems & M. Mujahid Rafique, 2018. "Horizontal Axis Wind Turbine Blade Design Methodologies for Efficiency Enhancement—A Review," Energies, MDPI, vol. 11(3), pages 1-34, February.
    7. Tahani, Mojtaba & Kavari, Ghazale & Masdari, Mehran & Mirhosseini, Mojtaba, 2017. "Aerodynamic design of horizontal axis wind turbine with innovative local linearization of chord and twist distributions," Energy, Elsevier, vol. 131(C), pages 78-91.
    8. Lanzafame, R. & Messina, M., 2007. "Fluid dynamics wind turbine design: Critical analysis, optimization and application of BEM theory," Renewable Energy, Elsevier, vol. 32(14), pages 2291-2305.
    9. Yavuz, T. & Koç, E. & Kılkış, B. & Erol, Ö. & Balas, C. & Aydemir, T., 2015. "Performance analysis of the airfoil-slat arrangements for hydro and wind turbine applications," Renewable Energy, Elsevier, vol. 74(C), pages 414-421.
    10. Karthikeyan, N. & Kalidasa Murugavel, K. & Arun Kumar, S. & Rajakumar, S., 2015. "Review of aerodynamic developments on small horizontal axis wind turbine blade," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 801-822.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yilmaz, Oktay, 2023. "Low-speed, low induction multi-blade rotor for energy efficient small wind turbines," Energy, Elsevier, vol. 282(C).
    2. Ikeda, Teruaki & Tanaka, Hiroto & Yoshimura, Ryosuke & Noda, Ryusuke & Fujii, Takeo & Liu, Hao, 2018. "A robust biomimetic blade design for micro wind turbines," Renewable Energy, Elsevier, vol. 125(C), pages 155-165.
    3. Sutrisno & Sigit Iswahyudi & Setyawan Bekti Wibowo, 2018. "Dimensional Analysis of Power Prediction of a Real-Scale Wind Turbine Based on Wind-Tunnel Torque Measurement of Small-Scaled Models," Energies, MDPI, vol. 11(9), pages 1-13, September.
    4. Manisha Sawant & Sameer Thakare & A. Prabhakara Rao & Andrés E. Feijóo-Lorenzo & Neeraj Dhanraj Bokde, 2021. "A Review on State-of-the-Art Reviews in Wind-Turbine- and Wind-Farm-Related Topics," Energies, MDPI, vol. 14(8), pages 1-30, April.
    5. Widad Yossri & Samah Ben Ayed & Abdessattar Abdelkefi, 2023. "High-Fidelity Modeling and Investigation on Blade Shape and Twist Angle Effects on the Efficiency of Small-Scale Wind Turbines," Energies, MDPI, vol. 16(8), pages 1-26, April.
    6. Thé, Jesse & Yu, Hesheng, 2017. "A critical review on the simulations of wind turbine aerodynamics focusing on hybrid RANS-LES methods," Energy, Elsevier, vol. 138(C), pages 257-289.
    7. Mauro, S. & Lanzafame, R. & Messina, M. & Brusca, S., 2023. "On the importance of the root-to-hub adapter effects on HAWT performance: A CFD-BEM numerical investigation," Energy, Elsevier, vol. 275(C).
    8. N. Aravindhan & M. P. Natarajan & S. Ponnuvel & P.K. Devan, 2023. "Recent developments and issues of small-scale wind turbines in urban residential buildings- A review," Energy & Environment, , vol. 34(4), pages 1142-1169, June.
    9. Zhiqiang, Li & Yunke, Wu & Jie, Hong & Zhihong, Zhang & Wenqi, Chen, 2018. "The study on performance and aerodynamics of micro counter-rotating HAWT," Energy, Elsevier, vol. 161(C), pages 939-954.
    10. Zhang, Sanxia & Luo, Kun & Yuan, Renyu & Wang, Qiang & Wang, Jianwen & Zhang, Liru & Fan, Jianren, 2018. "Influences of operating parameters on the aerodynamics and aeroacoustics of a horizontal-axis wind turbine," Energy, Elsevier, vol. 160(C), pages 597-611.
    11. Ke Song & Huiting Huan & Yuchi Kang, 2022. "Aerodynamic Performance and Wake Characteristics Analysis of Archimedes Spiral Wind Turbine Rotors with Different Blade Angle," Energies, MDPI, vol. 16(1), pages 1-18, December.
    12. Sikandar Khan, 2023. "A Modeling Study Focused on Improving the Aerodynamic Performance of a Small Horizontal Axis Wind Turbine," Sustainability, MDPI, vol. 15(6), pages 1-15, March.
    13. Yossri, W. & Ben Ayed, S. & Abdelkefi, A., 2023. "Evaluation of the efficiency of bioinspired blade designs for low-speed small-scale wind turbines with the presence of inflow turbulence effects," Energy, Elsevier, vol. 273(C).
    14. Bai, Chi-Jeng & Wang, Wei-Cheng, 2016. "Review of computational and experimental approaches to analysis of aerodynamic performance in horizontal-axis wind turbines (HAWTs)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 506-519.
    15. Chi-Jeng Bai & Wei-Cheng Wang & Po-Wei Chen & Wen-Tong Chong, 2014. "System Integration of the Horizontal-Axis Wind Turbine: The Design of Turbine Blades with an Axial-Flux Permanent Magnet Generator," Energies, MDPI, vol. 7(11), pages 1-21, November.
    16. O'Rourke, Fergal & Boyle, Fergal & Reynolds, Anthony & Kennedy, David M., 2015. "Hydrodynamic performance prediction of a tidal current turbine operating in non-uniform inflow conditions," Energy, Elsevier, vol. 93(P2), pages 2483-2496.
    17. Alfredo Alcayde & Quetzalcoatl Hernandez-Escobedo & David Muñoz-Rodríguez & Alberto-Jesus Perea-Moreno, 2022. "Worldwide Research Trends on Optimizing Wind Turbine Efficiency," Energies, MDPI, vol. 15(18), pages 1-7, September.
    18. Abdul Ghani Olabi & Tabbi Wilberforce & Khaled Elsaid & Enas Taha Sayed & Tareq Salameh & Mohammad Ali Abdelkareem & Ahmad Baroutaji, 2021. "A Review on Failure Modes of Wind Turbine Components," Energies, MDPI, vol. 14(17), pages 1-44, August.
    19. Elena Sosnina & Andrey Dar’enkov & Andrey Kurkin & Ivan Lipuzhin & Andrey Mamonov, 2022. "Review of Efficiency Improvement Technologies of Wind Diesel Hybrid Systems for Decreasing Fuel Consumption," Energies, MDPI, vol. 16(1), pages 1-38, December.
    20. Hailay Kiros Kelele & Torbjørn Kirstian Nielsen & Lars Froyd & Mulu Bayray Kahsay, 2020. "Catchment Based Aerodynamic Performance Analysis of Small Wind Turbine Using a Single Blade Concept for a Low Cost of Energy," Energies, MDPI, vol. 13(21), pages 1-20, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3033-:d:798535. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.