IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v87y2010i7p2304-2312.html
   My bibliography  Save this article

Maximum-power-point tracking with reduced mechanical stress applied to wind-energy-conversion-systems

Author

Listed:
  • González, L.G.
  • Figueres, E.
  • Garcerá, G.
  • Carranza, O.

Abstract

This paper presents an improved maximum-power-point tracking algorithm for wind-energy-conversion-systems. The proposed method significantly reduces the turbine mechanical stress with regard to conventional techniques, so that both the maintenance needs and the medium time between failures are expected to be improved. To achieve these objectives, a sensorless speed control loop receives its reference signal from a modified Perturb&Observe algorithm, in which the typical steps on the reference speed have been substituted by a fixed and well-defined slope ramp signal. As a result, it is achieved a soft dynamic response of both the torque and the speed of the wind turbine, so that the whole system suffers from a lower mechanical stress than with conventional P&O techniques. The proposed method has been applied to a wind turbine based on a permanent magnet synchronous generator operating at variable speed, which is connected to the distribution grid by means of a back to back converter.

Suggested Citation

  • González, L.G. & Figueres, E. & Garcerá, G. & Carranza, O., 2010. "Maximum-power-point tracking with reduced mechanical stress applied to wind-energy-conversion-systems," Applied Energy, Elsevier, vol. 87(7), pages 2304-2312, July.
  • Handle: RePEc:eee:appene:v:87:y:2010:i:7:p:2304-2312
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(09)00517-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Hongxing & Wei, Zhou & Chengzhi, Lou, 2009. "Optimal design and techno-economic analysis of a hybrid solar-wind power generation system," Applied Energy, Elsevier, vol. 86(2), pages 163-169, February.
    2. Nagai, Baku M. & Ameku, Kazumasa & Roy, Jitendro Nath, 2009. "Performance of a 3Â kW wind turbine generator with variable pitch control system," Applied Energy, Elsevier, vol. 86(9), pages 1774-1782, September.
    3. Arifujjaman, Md. & Iqbal, M. Tariq & Quaicoe, John E., 2008. "Energy capture by a small wind-energy conversion system," Applied Energy, Elsevier, vol. 85(1), pages 41-51, January.
    4. Eakburanawat, Jensak & Boonyaroonate, Itsda, 2006. "Development of a thermoelectric battery-charger with microcontroller-based maximum power point tracking technique," Applied Energy, Elsevier, vol. 83(7), pages 687-704, July.
    5. Brahmi, Jemaa & Krichen, Lotfi & Ouali, Abderrazak, 2009. "A comparative study between three sensorless control strategies for PMSG in wind energy conversion system," Applied Energy, Elsevier, vol. 86(9), pages 1565-1573, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Melício, R. & Mendes, V.M.F. & Catalão, J.P.S., 2011. "Transient analysis of variable-speed wind turbines at wind speed disturbances and a pitch control malfunction," Applied Energy, Elsevier, vol. 88(4), pages 1322-1330, April.
    2. Kalantar, M. & Mousavi G., S.M., 2010. "Dynamic behavior of a stand-alone hybrid power generation system of wind turbine, microturbine, solar array and battery storage," Applied Energy, Elsevier, vol. 87(10), pages 3051-3064, October.
    3. Gomis-Bellmunt, Oriol & Junyent-Ferré, Adrià & Sumper, Andreas & Galceran-Arellano, Samuel, 2010. "Maximum generation power evaluation of variable frequency offshore wind farms when connected to a single power converter," Applied Energy, Elsevier, vol. 87(10), pages 3103-3109, October.
    4. Chi-Jeng Bai & Wei-Cheng Wang & Po-Wei Chen & Wen-Tong Chong, 2014. "System Integration of the Horizontal-Axis Wind Turbine: The Design of Turbine Blades with an Axial-Flux Permanent Magnet Generator," Energies, MDPI, vol. 7(11), pages 1-21, November.
    5. González, L.G. & Garcerá, G. & Figueres, E. & González, R., 2010. "Effects of the PWM carrier signals synchronization on the DC-link current in back-to-back converters," Applied Energy, Elsevier, vol. 87(8), pages 2491-2499, August.
    6. Rocha, P.A. Costa & Carneiro de Araujo, J.W. & Lima, R.J. Pontes & Vieira da Silva, M.E. & Albiero, D. & de Andrade, C.F. & Carneiro, F.O.M., 2018. "The effects of blade pitch angle on the performance of small-scale wind turbine in urban environments," Energy, Elsevier, vol. 148(C), pages 169-178.
    7. Dixon, Christopher & Reynolds, Steve & Rodley, David, 2016. "Micro/small wind turbine power control for electrolysis applications," Renewable Energy, Elsevier, vol. 87(P1), pages 182-192.
    8. Xiangyuan Zheng & Huadong Zheng & Yu Lei & Yi Li & Wei Li, 2020. "An Offshore Floating Wind–Solar–Aquaculture System: Concept Design and Extreme Response in Survival Conditions," Energies, MDPI, vol. 13(3), pages 1-23, January.
    9. Shou, Chunhui & Luo, Zhongyang & Wang, Tao & Shen, Weidong & Rosengarten, Gary & Wei, Wei & Wang, Cheng & Ni, Mingjiang & Cen, Kefa, 2012. "Investigation of a broadband TiO2/SiO2 optical thin-film filter for hybrid solar power systems," Applied Energy, Elsevier, vol. 92(C), pages 298-306.
    10. Wang, Gang & Zhang, Zhen & Lin, Jianqing, 2024. "Multi-energy complementary power systems based on solar energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    11. Pagnini, Luisa C. & Burlando, Massimiliano & Repetto, Maria Pia, 2015. "Experimental power curve of small-size wind turbines in turbulent urban environment," Applied Energy, Elsevier, vol. 154(C), pages 112-121.
    12. Narayana, M. & Putrus, G.A. & Jovanovic, M. & Leung, P.S. & McDonald, S., 2012. "Generic maximum power point tracking controller for small-scale wind turbines," Renewable Energy, Elsevier, vol. 44(C), pages 72-79.
    13. Abbes, Dhaker & Martinez, André & Champenois, Gérard, 2014. "Life cycle cost, embodied energy and loss of power supply probability for the optimal design of hybrid power systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 98(C), pages 46-62.
    14. Chen, Hung-Cheng, 2013. "Optimum capacity determination of stand-alone hybrid generation system considering cost and reliability," Applied Energy, Elsevier, vol. 103(C), pages 155-164.
    15. Toja-Silva, Francisco & Lopez-Garcia, Oscar & Peralta, Carlos & Navarro, Jorge & Cruz, Ignacio, 2016. "An empirical–heuristic optimization of the building-roof geometry for urban wind energy exploitation on high-rise buildings," Applied Energy, Elsevier, vol. 164(C), pages 769-794.
    16. Dashti, Reza & Afsharnia, Saeed & Ghasemi, Hassan, 2010. "A new long term load management model for asset governance of electrical distribution systems," Applied Energy, Elsevier, vol. 87(12), pages 3661-3667, December.
    17. Loiy Al-Ghussain & Mohammad Abujubbeh & Adnan Darwish Ahmad & Ahmad M. Abubaker & Onur Taylan & Murat Fahrioglu & Nelson K. Akafuah, 2020. "100% Renewable Energy Grid for Rural Electrification of Remote Areas: A Case Study in Jordan," Energies, MDPI, vol. 13(18), pages 1-18, September.
    18. Daniel Icaza & David Borge-Diez & Santiago Pulla Galindo & Carlos Flores-Vázquez, 2020. "Modeling and Simulation of a Hybrid System of Solar Panels and Wind Turbines for the Supply of Autonomous Electrical Energy to Organic Architectures," Energies, MDPI, vol. 13(18), pages 1-27, September.
    19. Tezer, Tuba & Yaman, Ramazan & Yaman, Gülşen, 2017. "Evaluation of approaches used for optimization of stand-alone hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 840-853.
    20. Narayana, Mahinsasa & Sunderland, Keith M. & Putrus, Ghanim & Conlon, Michael F., 2017. "Adaptive linear prediction for optimal control of wind turbines," Renewable Energy, Elsevier, vol. 113(C), pages 895-906.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:87:y:2010:i:7:p:2304-2312. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.