IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i17p6148-d896491.html
   My bibliography  Save this article

Virtual Synchronous Generator, a Comprehensive Overview

Author

Listed:
  • Wenju Sang

    (Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Wenyong Guo

    (Center for Applied Superconductivity, School of Electrical Engineering, Beijing Jiao Tong University, Beijing 100044, China)

  • Shaotao Dai

    (Center for Applied Superconductivity, School of Electrical Engineering, Beijing Jiao Tong University, Beijing 100044, China)

  • Chenyu Tian

    (Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Suhang Yu

    (Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Yuping Teng

    (Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China)

Abstract

Renewable energy sources (RESs) are generally connected to the grid through power electronic interfaces, which generate electrical power instantaneously with little inertia. With the increasing penetration of RESs, the grid will gradually develop into a low inertia and underdamped power system, which results in serious grid frequency stabilization problems. The virtual synchronous generator (VSG) is an emerging technology that mimics the operation characteristics of traditional synchronous generators (SGs). Virtual inertia and damping are therefore introduced, which help to stabilize grid frequency. This paper gives a comprehensive overview of the VSG. The basic operation principle of VSG is introduced and analyzed in depth. The key issues related to VSG are summarized and discussed, including hardware configuration, software control strategies, energy supporting methods, and typical applications.

Suggested Citation

  • Wenju Sang & Wenyong Guo & Shaotao Dai & Chenyu Tian & Suhang Yu & Yuping Teng, 2022. "Virtual Synchronous Generator, a Comprehensive Overview," Energies, MDPI, vol. 15(17), pages 1-29, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6148-:d:896491
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/17/6148/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/17/6148/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Quan-Quan Zhang & Rong-Jong Wai, 2021. "Robust Power Sharing and Voltage Stabilization Control Structure via Sliding-Mode Technique in Islanded Micro-Grid," Energies, MDPI, vol. 14(4), pages 1-27, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Solomon Feleke & Balamurali Pydi & Raavi Satish & Hossam Kotb & Mohammed Alenezi & Mokhtar Shouran, 2023. "Frequency Stability Enhancement Using Differential-Evolution- and Genetic-Algorithm-Optimized Intelligent Controllers in Multiple Virtual Synchronous Machine Systems," Sustainability, MDPI, vol. 15(18), pages 1-18, September.
    2. Kabir Momoh & Shamsul Aizam Zulkifli & Petr Korba & Felix Rafael Segundo Sevilla & Arif Nur Afandi & Alfredo Velazquez-Ibañez, 2023. "State-of-the-Art Grid Stability Improvement Techniques for Electric Vehicle Fast-Charging Stations for Future Outlooks," Energies, MDPI, vol. 16(9), pages 1-29, May.
    3. Daniele Linaro & Federico Bizzarri & Davide Giudice & Cosimo Pisani & Giorgio M. Giannuzzi & Samuele Grillo & Angelo M. Brambilla, 2023. "Continuous estimation of power system inertia using convolutional neural networks," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    4. Grzegorz Drałus & Damian Mazur & Jacek Kusznier & Jakub Drałus, 2023. "Application of Artificial Intelligence Algorithms in Multilayer Perceptron and Elman Networks to Predict Photovoltaic Power Plant Generation," Energies, MDPI, vol. 16(18), pages 1-23, September.
    5. Myada Shadoul & Razzaqul Ahshan & Rashid S. AlAbri & Abdullah Al-Badi & Mohammed Albadi & Mohsin Jamil, 2022. "A Comprehensive Review on a Virtual-Synchronous Generator: Topologies, Control Orders and Techniques, Energy Storages, and Applications," Energies, MDPI, vol. 15(22), pages 1-27, November.
    6. Rongliang Shi & Caihua Lan & Ji Huang & Chengwei Ju, 2023. "Analysis and Optimization Strategy of Active Power Dynamic Response for VSG under a Weak Grid," Energies, MDPI, vol. 16(12), pages 1-18, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sandro Sitompul & Goro Fujita, 2021. "Impact of Advanced Load-Frequency Control on Optimal Size of Battery Energy Storage in Islanded Microgrid System," Energies, MDPI, vol. 14(8), pages 1-18, April.
    2. Saheb Khanabdal & Mahdi Banejad & Frede Blaabjerg & Nasser Hosseinzadeh, 2021. "A Novel Power Sharing Strategy Based on Virtual Flux Droop and Model Predictive Control for Islanded Low-Voltage AC Microgrids," Energies, MDPI, vol. 14(16), pages 1-17, August.
    3. Ammar Armghan & Muhammad Kashif Azeem & Hammad Armghan & Ming Yang & Fayadh Alenezi & Mudasser Hassan, 2021. "Dynamical Operation Based Robust Nonlinear Control of DC Microgrid Considering Renewable Energy Integration," Energies, MDPI, vol. 14(13), pages 1-23, July.
    4. Piotr Leśniewski & Andrzej Bartoszewicz, 2021. "Reaching Law Based Sliding Mode Control of Sampled Time Systems," Energies, MDPI, vol. 14(7), pages 1-19, March.
    5. Shafaat Ullah & Laiq Khan & Mohsin Jamil & Muhammad Jafar & Sidra Mumtaz & Saghir Ahmad, 2021. "A Finite-Time Robust Distributed Cooperative Secondary Control Protocol for Droop-Based Islanded AC Microgrids," Energies, MDPI, vol. 14(10), pages 1-26, May.
    6. Giulio Ferro & Michela Robba & Roberto Sacile, 2021. "Optimal Control of Smart Distributed Power and Energy Systems," Energies, MDPI, vol. 15(1), pages 1-2, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6148-:d:896491. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.