IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v162y2022ics1364032122002519.html
   My bibliography  Save this article

The next generation of fast charging methods for Lithium-ion batteries: The natural current-absorption methods

Author

Listed:
  • Bandara, T.G. Thusitha Asela
  • Viera, J.C.
  • González, M.

Abstract

The fast charging of Lithium-Ion Batteries (LIBs) is an active ongoing area of research over three decades in industry and academics. The objective is to design optimal charging strategies that minimize charging time while maintaining battery performance, safety, and charger practicality. The main problem is that the LIB technology depends on multi-disciplinary engineering factors that form rapidly varying intrinsic states in the cell during the charging process. These factors take the form of interdependent electrochemical, structural, and thermo-kinetic perspectives. Here, the list can grow as electrochemical changes; charge transfer, ionic conductivity, structural transformations; mass/particle transfer, migration, diffusion, and thermo-kinetic exchanges; phase transitions, heat effects, and collectively their inter-dependencies. Fast charging intensifies this varying nature making it very difficult to achieve an optimal process. In fact, many charging strategies fail to adhere to such rapid variations and are based on predefined/fixed parameters such as voltage, current, and temperature, individually or collectively, that enforce and aggregate stress on the LIBs. Consequently, fast charging accelerates battery degradation and reduces battery life. In order to facilitate the design of optimal fast charging strategies, this paper analyzes the literature around the influences of intrinsic factors on the LIB charging process under electrochemical, structural, and thermo-kinetic perspectives. Then, it examines the existing charging strategies with a new categorical analogy of; 1) memory-based, 2) memory-less, and 3) short-cache, showing their efforts to achieve the optimal charging targets and challenges in adapting to the demanded intrinsic variations. Accordingly, a potential paradigm shift for the next generation of LIBs’ fast charging strategies has been identified in the new area of short-cache-based natural current-absorption-driven charging strategies. Importantly, this new approach is competent in bringing the practical intelligence necessary to adapt the control of LIB fast charging over rapid intrinsic variations.

Suggested Citation

  • Bandara, T.G. Thusitha Asela & Viera, J.C. & González, M., 2022. "The next generation of fast charging methods for Lithium-ion batteries: The natural current-absorption methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
  • Handle: RePEc:eee:rensus:v:162:y:2022:i:c:s1364032122002519
    DOI: 10.1016/j.rser.2022.112338
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032122002519
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2022.112338?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eric R. Fadel & Francesco Faglioni & Georgy Samsonidze & Nicola Molinari & Boris V. Merinov & William A. Goddard III & Jeffrey C. Grossman & Jonathan P. Mailoa & Boris Kozinsky, 2019. "Role of solvent-anion charge transfer in oxidative degradation of battery electrolytes," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    2. Byeong-Gyu Chae & Seong Yong Park & Jay Hyok Song & Eunha Lee & Woo Sung Jeon, 2021. "Evolution and expansion of Li concentration gradient during charge–discharge cycling," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    3. Ryan Collin & Yu Miao & Alex Yokochi & Prasad Enjeti & Annette von Jouanne, 2019. "Advanced Electric Vehicle Fast-Charging Technologies," Energies, MDPI, vol. 12(10), pages 1-26, May.
    4. Ruiyuan Tian & Sang-Hoon Park & Paul J. King & Graeme Cunningham & João Coelho & Valeria Nicolosi & Jonathan N. Coleman, 2019. "Quantifying the factors limiting rate performance in battery electrodes," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    5. Killer, Marvin & Farrokhseresht, Mana & Paterakis, Nikolaos G., 2020. "Implementation of large-scale Li-ion battery energy storage systems within the EMEA region," Applied Energy, Elsevier, vol. 260(C).
    6. Mustafa Cagatay Kocer & Ceyhun Cengiz & Mehmet Gezer & Doruk Gunes & Mehmet Aytac Cinar & Bora Alboyaci & Ahmet Onen, 2019. "Assessment of Battery Storage Technologies for a Turkish Power Network," Sustainability, MDPI, vol. 11(13), pages 1-33, July.
    7. Yayuan Liu & Yangying Zhu & Yi Cui, 2019. "Challenges and opportunities towards fast-charging battery materials," Nature Energy, Nature, vol. 4(7), pages 540-550, July.
    8. Zengkai Wang & Shengkui Zeng & Jianbin Guo & Taichun Qin, 2018. "Remaining capacity estimation of lithium-ion batteries based on the constant voltage charging profile," PLOS ONE, Public Library of Science, vol. 13(7), pages 1-22, July.
    9. Namhyung Kim & Sujong Chae & Jiyoung Ma & Minseong Ko & Jaephil Cho, 2017. "Fast-charging high-energy lithium-ion batteries via implantation of amorphous silicon nanolayer in edge-plane activated graphite anodes," Nature Communications, Nature, vol. 8(1), pages 1-10, December.
    10. Meng Di Yin & Jeonghun Cho & Daejin Park, 2016. "Pulse-Based Fast Battery IoT Charger Using Dynamic Frequency and Duty Control Techniques Based on Multi-Sensing of Polarization Curve," Energies, MDPI, vol. 9(3), pages 1-20, March.
    11. Jun Pu & Jiachen Li & Kai Zhang & Tao Zhang & Chaowei Li & Haixia Ma & Jia Zhu & Paul V. Braun & Jun Lu & Huigang Zhang, 2019. "Conductivity and lithiophilicity gradients guide lithium deposition to mitigate short circuits," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    12. Jiawei Qian & Lei Liu & Jixiang Yang & Siyuan Li & Xiao Wang & Houlong L. Zhuang & Yingying Lu, 2018. "Electrochemical surface passivation of LiCoO2 particles at ultrahigh voltage and its applications in lithium-based batteries," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    13. Susanne Rothgang & Matthias Rogge & Jan Becker & Dirk Uwe Sauer, 2015. "Battery Design for Successful Electrification in Public Transport," Energies, MDPI, vol. 8(7), pages 1-23, June.
    14. In Hyuk Son & Jong Hwan Park & Seongyong Park & Kwangjin Park & Sangil Han & Jaeho Shin & Seok-Gwang Doo & Yunil Hwang & Hyuk Chang & Jang Wook Choi, 2017. "Graphene balls for lithium rechargeable batteries with fast charging and high volumetric energy densities," Nature Communications, Nature, vol. 8(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Cong & Chen, Yunxia, 2024. "Unsupervised dynamic prognostics for abnormal degradation of lithium-ion battery," Applied Energy, Elsevier, vol. 365(C).
    2. Wang, Cong & Chen, Yunxia & Zhang, Qingyuan & Zhu, Jiaxiao, 2023. "Dynamic early recognition of abnormal lithium-ion batteries before capacity drops using self-adaptive quantum clustering," Applied Energy, Elsevier, vol. 336(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hridoy Roy & Bimol Nath Roy & Md. Hasanuzzaman & Md. Shahinoor Islam & Ayman S. Abdel-Khalik & Mostaf S. Hamad & Shehab Ahmed, 2022. "Global Advancements and Current Challenges of Electric Vehicle Batteries and Their Prospects: A Comprehensive Review," Sustainability, MDPI, vol. 14(24), pages 1-30, December.
    2. Mohammad Shahjalal & Tamanna Shams & Moshammed Nishat Tasnim & Md Rishad Ahmed & Mominul Ahsan & Julfikar Haider, 2022. "A Critical Review on Charging Technologies of Electric Vehicles," Energies, MDPI, vol. 15(21), pages 1-26, November.
    3. Xinrong Huang & Yuanyuan Li & Anirudh Budnar Acharya & Xin Sui & Jinhao Meng & Remus Teodorescu & Daniel-Ioan Stroe, 2020. "A Review of Pulsed Current Technique for Lithium-ion Batteries," Energies, MDPI, vol. 13(10), pages 1-18, May.
    4. Harri Aaltonen & Seppo Sierla & Rakshith Subramanya & Valeriy Vyatkin, 2021. "A Simulation Environment for Training a Reinforcement Learning Agent Trading a Battery Storage," Energies, MDPI, vol. 14(17), pages 1-20, September.
    5. Jean-Michel Clairand & Paulo Guerra-Terán & Xavier Serrano-Guerrero & Mario González-Rodríguez & Guillermo Escrivá-Escrivá, 2019. "Electric Vehicles for Public Transportation in Power Systems: A Review of Methodologies," Energies, MDPI, vol. 12(16), pages 1-22, August.
    6. Yuqiang Zeng & Buyi Zhang & Yanbao Fu & Fengyu Shen & Qiye Zheng & Divya Chalise & Ruijiao Miao & Sumanjeet Kaur & Sean D. Lubner & Michael C. Tucker & Vincent Battaglia & Chris Dames & Ravi S. Prashe, 2023. "Extreme fast charging of commercial Li-ion batteries via combined thermal switching and self-heating approaches," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    7. Lovro Frković & Boris Ćosić & Tomislav Pukšec & Nikola Vladimir, 2023. "Modelling of the Standalone Onshore Charging Station: The Nexus between Offshore Renewables and All-Electric Ships," Energies, MDPI, vol. 16(15), pages 1-16, August.
    8. Entwistle, Jake & Ge, Ruihuan & Pardikar, Kunal & Smith, Rachel & Cumming, Denis, 2022. "Carbon binder domain networks and electrical conductivity in lithium-ion battery electrodes: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    9. Ramin Sakipour & Hamdi Abdi, 2020. "Optimizing Battery Energy Storage System Data in the Presence of Wind Power Plants: A Comparative Study on Evolutionary Algorithms," Sustainability, MDPI, vol. 12(24), pages 1-21, December.
    10. Lei, Deyong & Wang, Yun & Fu, Jingfei & Zhu, Xiaobao & Shi, Jing & Wang, Yachao, 2024. "Electrochemical-thermal analysis of large-sized lithium-ion batteries: Influence of cell thickness and cooling strategy in charging," Energy, Elsevier, vol. 307(C).
    11. Jerzy Ryszard Szymanski & Marta Zurek-Mortka & Daniel Wojciechowski & Nikolai Poliakov, 2020. "Unidirectional DC/DC Converter with Voltage Inverter for Fast Charging of Electric Vehicle Batteries," Energies, MDPI, vol. 13(18), pages 1-17, September.
    12. Gharehghani, Ayat & Rabiei, Moeed & Mehranfar, Sadegh & Saeedipour, Soheil & Mahmoudzadeh Andwari, Amin & García, Antonio & Reche, Carlos Mico, 2024. "Progress in battery thermal management systems technologies for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    13. Alexander Micallef & Cyril Spiteri Staines & Alan Cassar, 2022. "Utility-Scale Storage Integration in the Maltese Medium-Voltage Distribution Network," Energies, MDPI, vol. 15(8), pages 1-20, April.
    14. Cian Gabbett & Luke Doolan & Kevin Synnatschke & Laura Gambini & Emmet Coleman & Adam G. Kelly & Shixin Liu & Eoin Caffrey & Jose Munuera & Catriona Murphy & Stefano Sanvito & Lewys Jones & Jonathan N, 2024. "Quantitative analysis of printed nanostructured networks using high-resolution 3D FIB-SEM nanotomography," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    15. Yap, Kah Yung & Chin, Hon Huin & Klemeš, Jiří Jaromír, 2022. "Solar Energy-Powered Battery Electric Vehicle charging stations: Current development and future prospect review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    16. Zhang, Guangxu & Wei, Xuezhe & Tang, Xuan & Zhu, Jiangong & Chen, Siqi & Dai, Haifeng, 2021. "Internal short circuit mechanisms, experimental approaches and detection methods of lithium-ion batteries for electric vehicles: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    17. McIlwaine, Neil & Foley, Aoife M. & Best, Robert & Morrow, D. John & Kez, Dlzar Al, 2023. "Modelling the effect of distributed battery energy storage in an isolated power system," Energy, Elsevier, vol. 263(PC).
    18. Kit McColl & Robert A. House & Gregory J. Rees & Alexander G. Squires & Samuel W. Coles & Peter G. Bruce & Benjamin J. Morgan & M. Saiful Islam, 2022. "Transition metal migration and O2 formation underpin voltage hysteresis in oxygen-redox disordered rocksalt cathodes," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    19. Xinchao Lu & Huachao Yang & Zheng Bo & Biyao Gong & Mengyu Cao & Xia Chen & Erka Wu & Jianhua Yan & Kefa Cen & Kostya (Ken) Ostrikov, 2022. "Aligned Ti 3 C 2 T X Aerogel with High Rate Performance, Power Density and Sub-Zero-Temperature Stability," Energies, MDPI, vol. 15(3), pages 1-12, February.
    20. Collath, Nils & Cornejo, Martin & Engwerth, Veronika & Hesse, Holger & Jossen, Andreas, 2023. "Increasing the lifetime profitability of battery energy storage systems through aging aware operation," Applied Energy, Elsevier, vol. 348(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:162:y:2022:i:c:s1364032122002519. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.