IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i17p4585-d408645.html
   My bibliography  Save this article

SiC-MOSFET and Si-IGBT-Based dc-dc Interleaved Converters for EV Chargers: Approach for Efficiency Comparison with Minimum Switching Losses Based on Complete Parasitic Modeling

Author

Listed:
  • Jelena Loncarski

    (Department of Electrical and Information Engineering, Politecnico di Bari, Via E. Orabona, 4, 70125 Bari, Italy
    Department of Engineering Sciences, Division of Electricity, Uppsala University, S-751 21 Uppsala, Sweden
    These authors contributed equally to this work.)

  • Vito Giuseppe Monopoli

    (Department of Electrical and Information Engineering, Politecnico di Bari, Via E. Orabona, 4, 70125 Bari, Italy
    These authors contributed equally to this work.)

  • Giuseppe Leonardo Cascella

    (Department of Electrical and Information Engineering, Politecnico di Bari, Via E. Orabona, 4, 70125 Bari, Italy
    These authors contributed equally to this work.)

  • Francesco Cupertino

    (Department of Electrical and Information Engineering, Politecnico di Bari, Via E. Orabona, 4, 70125 Bari, Italy
    These authors contributed equally to this work.)

Abstract

Widespread dissemination of electric mobility is highly dependent on the power converters, storage systems and renewable energy sources. The efficiency and reliability, combined with the emerging and innovative technologies, are crucial when speaking of power converters. In this paper the interleaved dc–dc topology has been considered for EV charging, due to its improved reliability. The efficiency comparison of the SiC-MOSFET and Si-IGBT-based converters has been done on wide range of switching frequency and output inductances. The interleaved converters were considered with the optimal switching parameters resulting from the analysis done on a detailed parasitic circuit model, ensuring minimum losses and maintaining the safe operating area. The analysis included the comparison of different inductors, and for the selected ones the complete system efficiency and cost were conducted. The results indicate the benefits when SiC-MOSFETs are applied to the interleaved dc–dc topology for wide ranges of output inductances and switching frequencies, and most importantly, they offer lower total volume but also total cost. The realistic and dynamic models of power devices obtained from the manufacturer’s experimental tests have been considered in both LTspice and PLECS simulation tools.

Suggested Citation

  • Jelena Loncarski & Vito Giuseppe Monopoli & Giuseppe Leonardo Cascella & Francesco Cupertino, 2020. "SiC-MOSFET and Si-IGBT-Based dc-dc Interleaved Converters for EV Chargers: Approach for Efficiency Comparison with Minimum Switching Losses Based on Complete Parasitic Modeling," Energies, MDPI, vol. 13(17), pages 1-20, September.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:17:p:4585-:d:408645
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/17/4585/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/17/4585/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jelena Loncarski & Vito Giuseppe Monopoli & Riccardo Leuzzi & Leposava Ristic & Francesco Cupertino, 2019. "Analytical and Simulation Fair Comparison of Three Level Si IGBT Based NPC Topologies and Two Level SiC MOSFET Based Topology for High Speed Drives," Energies, MDPI, vol. 12(23), pages 1-16, November.
    2. Aritra Ghosh, 2020. "Possibilities and Challenges for the Inclusion of the Electric Vehicle (EV) to Reduce the Carbon Footprint in the Transport Sector: A Review," Energies, MDPI, vol. 13(10), pages 1-22, May.
    3. Fermín Barrero-González & María Isabel Milanés-Montero & Eva González-Romera & Enrique Romero-Cadaval & Carlos Roncero-Clemente, 2019. "Control Strategy for Electric Vehicle Charging Station Power Converters with Active Functions," Energies, MDPI, vol. 12(20), pages 1-18, October.
    4. Elangovan Devaraj & Peter K. Joseph & Thundil Karuppa Raj Rajagopal & Senthilarasu Sundaram, 2020. "Renewable Energy Powered Plugged-In Hybrid Vehicle Charging System for Sustainable Transportation," Energies, MDPI, vol. 13(8), pages 1-17, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matej Bereš & Dobroslav Kováč & Tibor Vince & Irena Kováčová & Ján Molnár & Iveta Tomčíková & Jozef Dziak & Patrik Jacko & Branislav Fecko & Šimon Gans, 2021. "Efficiency Enhancement of Non-Isolated DC-DC Interleaved Buck Converter for Renewable Energy Sources," Energies, MDPI, vol. 14(14), pages 1-15, July.
    2. Salvatore Musumeci, 2022. "Special Issue “Advanced DC-DC Power Converters and Switching Converters”," Energies, MDPI, vol. 15(4), pages 1-5, February.
    3. Davide D’Amato & Marco Lorito & Vito Giuseppe Monopoli & Rinaldo Consoletti & Giuseppe Maiellaro & Francesco Cupertino, 2023. "Design Procedure and Testing for the Electrification of a Maintenance Railway Vehicle," Energies, MDPI, vol. 16(3), pages 1-22, January.
    4. Paweł Górecki & Krzysztof Górecki, 2020. "Analysis of the Usefulness Range of the Averaged Electrothermal Model of a Diode–Transistor Switch to Compute the Characteristics of the Boost Converter," Energies, MDPI, vol. 14(1), pages 1-16, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Md. Mosaraf Hossain Khan & Amran Hossain & Aasim Ullah & Molla Shahadat Hossain Lipu & S. M. Shahnewaz Siddiquee & M. Shafiul Alam & Taskin Jamal & Hafiz Ahmed, 2021. "Integration of Large-Scale Electric Vehicles into Utility Grid: An Efficient Approach for Impact Analysis and Power Quality Assessment," Sustainability, MDPI, vol. 13(19), pages 1-18, October.
    2. Rafał Kopacz & Michał Harasimczuk & Bartosz Lasek & Rafał Miśkiewicz & Jacek Rąbkowski, 2021. "All-SiC ANPC Submodule for an Advanced 1.5 kV EV Charging System under Various Modulation Methods," Energies, MDPI, vol. 14(17), pages 1-16, September.
    3. Piotr Musznicki & Pawel B. Derkacz & Piotr J. Chrzan, 2021. "Wideband Modeling of DC-DC Buck Converter with GaN Transistors," Energies, MDPI, vol. 14(15), pages 1-12, July.
    4. Timo Busch & Michael L. Barnett & Roger Leonard Burritt & Benjamin W. Cashore & R. Edward Freeman & Irene Henriques & Bryan W. Husted & Rajat Panwar & Jonatan Pinkse & Stefan Schaltegger & Jeff York, 2024. "Moving beyond “the” business case: How to make corporate sustainability work," Business Strategy and the Environment, Wiley Blackwell, vol. 33(2), pages 776-787, February.
    5. Jiaming Zhou & Chunxiao Feng & Qingqing Su & Shangfeng Jiang & Zhixian Fan & Jiageng Ruan & Shikai Sun & Leli Hu, 2022. "The Multi-Objective Optimization of Powertrain Design and Energy Management Strategy for Fuel Cell–Battery Electric Vehicle," Sustainability, MDPI, vol. 14(10), pages 1-19, May.
    6. Maria Giuffrida & Riccardo Mangiaracina, 2020. "Green Practices for Global Supply Chains in Diverse Industrial, Geographical, and Technological Settings: A Literature Review and Research Agenda," Sustainability, MDPI, vol. 12(23), pages 1-18, December.
    7. Mauro Zucca & Vincenzo Cirimele & Jorge Bruna & Davide Signorino & Erika Laporta & Jacopo Colussi & Miguel Angel Alonso Tejedor & Federico Fissore & Umberto Pogliano, 2021. "Assessment of the Overall Efficiency in WPT Stations for Electric Vehicles," Sustainability, MDPI, vol. 13(5), pages 1-19, February.
    8. Anam Nadeem & Mosè Rossi & Erica Corradi & Lingkang Jin & Gabriele Comodi & Nadeem Ahmed Sheikh, 2022. "Energy-Environmental Planning of Electric Vehicles (EVs): A Case Study of the National Energy System of Pakistan," Energies, MDPI, vol. 15(9), pages 1-19, April.
    9. Laura Essak & Aritra Ghosh, 2022. "Floating Photovoltaics: A Review," Clean Technol., MDPI, vol. 4(3), pages 1-18, August.
    10. Gianluca Valenti & Stefano Murgia & Ida Costanzo & Matteo Scarnera & Francesco Battistella, 2021. "Experimental Determination of the Performances during the Cold Start-Up of an Air Compressor Unit for Electric and Electrified Heavy-Duty Vehicles," Energies, MDPI, vol. 14(12), pages 1-14, June.
    11. Tomasz Konewka & Joanna Bednarz & Tomasz Czuba, 2021. "Building a Competitive Advantage for Indonesia in the Development of the Regional EV Battery Chain," Energies, MDPI, vol. 14(21), pages 1-13, November.
    12. Yang Yang & Jinlong Cui & Xin Cui, 2020. "Design and Analysis of Magnetic Coils for Optimizing the Coupling Coefficient in an Electric Vehicle Wireless Power Transfer System," Energies, MDPI, vol. 13(16), pages 1-15, August.
    13. Hafize Nurgul Durmus Senyapar & Murat Akil & Emrah Dokur, 2023. "Adoption of Electric Vehicles: Purchase Intentions and Consumer Behaviors Research in Turkey," SAGE Open, , vol. 13(2), pages 21582440231, June.
    14. Isabel C. Gil-García & Mª Socorro García-Cascales & Habib Dagher & Angel Molina-García, 2021. "Electric Vehicle and Renewable Energy Sources: Motor Fusion in the Energy Transition from a Multi-Indicator Perspective," Sustainability, MDPI, vol. 13(6), pages 1-19, March.
    15. Harsh, Pratik & Das, Debapriya, 2022. "Optimal coordination strategy of demand response and electric vehicle aggregators for the energy management of reconfigured grid-connected microgrid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    16. Muhammad Shahab & Shaorong Wang & Abdul Khalique Junejo, 2021. "Improved Control Strategy for Three-Phase Microgrid Management with Electric Vehicles Using Multi Objective Optimization Algorithm," Energies, MDPI, vol. 14(4), pages 1-23, February.
    17. Md. Sazal Miah & Molla Shahadat Hossain Lipu & Sheikh Tanzim Meraj & Kamrul Hasan & Shaheer Ansari & Taskin Jamal & Hasan Masrur & Rajvikram Madurai Elavarasan & Aini Hussain, 2021. "Optimized Energy Management Schemes for Electric Vehicle Applications: A Bibliometric Analysis towards Future Trends," Sustainability, MDPI, vol. 13(22), pages 1-38, November.
    18. Tao Zhang & Ningyuan Guo & Xiaoxia Sun & Jie Fan & Naifeng Yang & Junjie Song & Yuan Zou, 2021. "A Systematic Framework for State of Charge, State of Health and State of Power Co-Estimation of Lithium-Ion Battery in Electric Vehicles," Sustainability, MDPI, vol. 13(9), pages 1-19, May.
    19. Shubham Mishra & Shrey Verma & Subhankar Chowdhury & Ambar Gaur & Subhashree Mohapatra & Gaurav Dwivedi & Puneet Verma, 2021. "A Comprehensive Review on Developments in Electric Vehicle Charging Station Infrastructure and Present Scenario of India," Sustainability, MDPI, vol. 13(4), pages 1-20, February.
    20. Ki-Beom Lee & Mohamed A. Ahmed & Dong-Ki Kang & Young-Chon Kim, 2020. "Deep Reinforcement Learning Based Optimal Route and Charging Station Selection," Energies, MDPI, vol. 13(23), pages 1-22, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:17:p:4585-:d:408645. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.