IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i6p2851-d1101468.html
   My bibliography  Save this article

Impact Assessment of Dynamic Loading Induced by the Provision of Frequency Containment Reserve on the Main Bearing Lifetime of a Wind Turbine

Author

Listed:
  • Narender Singh

    (Department of Electromechanical, Systems & Metal Engineering, Faculty of Engineering & Architecture, Ghent University, Tech Lane Ghent Science Park—Campus A, Technologiepark-Zwijnaarde 131, B-9052 Ghent, Belgium
    FlandersMake@UGent—Corelab MIRO, Flanders Make, B-9052 Ghent, Belgium)

  • Dibakor Boruah

    (Department of Electromechanical, Systems & Metal Engineering, Faculty of Engineering & Architecture, Ghent University, Tech Lane Ghent Science Park—Campus A, Technologiepark-Zwijnaarde 131, B-9052 Ghent, Belgium)

  • Jeroen D. M. De Kooning

    (Department of Electromechanical, Systems & Metal Engineering, Faculty of Engineering & Architecture, Ghent University, Tech Lane Ghent Science Park—Campus A, Technologiepark-Zwijnaarde 131, B-9052 Ghent, Belgium
    FlandersMake@UGent—Corelab MIRO, Flanders Make, B-9052 Ghent, Belgium)

  • Wim De Waele

    (Department of Electromechanical, Systems & Metal Engineering, Faculty of Engineering & Architecture, Ghent University, Tech Lane Ghent Science Park—Campus A, Technologiepark-Zwijnaarde 131, B-9052 Ghent, Belgium)

  • Lieven Vandevelde

    (Department of Electromechanical, Systems & Metal Engineering, Faculty of Engineering & Architecture, Ghent University, Tech Lane Ghent Science Park—Campus A, Technologiepark-Zwijnaarde 131, B-9052 Ghent, Belgium
    FlandersMake@UGent—Corelab MIRO, Flanders Make, B-9052 Ghent, Belgium)

Abstract

The components of an operational wind turbine are continuously impacted by both static and dynamic loads. Regular inspections and maintenance are required to keep these components healthy. The main bearing of a wind turbine is one such component that experiences heavy loading forces during operation. These forces depend on various parameters such as wind speed, operating regime and control actions. When a wind turbine provides frequency containment reserve (FCR) to support the grid frequency, the forces acting upon the main bearing are also expected to exhibit more dynamic variations. These forces have a direct impact on the lifetime of the main bearing. With an increasing trend of wind turbines participating in the frequency ancillary services market, an analysis of these dynamic forces becomes necessary. To this end, this paper assesses the effect of FCR-based control on the main bearing lifetime of the wind turbine. Firstly, a control algorithm is implemented such that the output power of the wind turbine is regulated as a function of grid frequency and the amount of FCR. Simulations are performed for a range of FCR to study the changing behaviour of dynamical forces acting on the main bearing with respect to the amount of FCR provided. Then, based on the outputs from these simulations and using 2 years of LiDAR wind data, the lifetime of the main bearing of the wind turbine is calculated and compared for each of the cases. Finally, based on the results obtained from this study, the impact of FCR provision on the main bearing lifetime is quantified and recommendations are made, that could be taken into account in the operation strategy of a wind farm.

Suggested Citation

  • Narender Singh & Dibakor Boruah & Jeroen D. M. De Kooning & Wim De Waele & Lieven Vandevelde, 2023. "Impact Assessment of Dynamic Loading Induced by the Provision of Frequency Containment Reserve on the Main Bearing Lifetime of a Wind Turbine," Energies, MDPI, vol. 16(6), pages 1-14, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2851-:d:1101468
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/6/2851/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/6/2851/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Benedikt Wiese & Niels L. Pedersen & Esmaeil S. Nadimi & Jürgen Herp, 2020. "Estimating the Remaining Power Generation of Wind Turbines—An Exploratory Study for Main Bearing Failures," Energies, MDPI, vol. 13(13), pages 1-11, July.
    2. Kusiak, Andrew & Li, Wenyan, 2011. "The prediction and diagnosis of wind turbine faults," Renewable Energy, Elsevier, vol. 36(1), pages 16-23.
    3. Kusiak, Andrew & Verma, Anoop, 2012. "Analyzing bearing faults in wind turbines: A data-mining approach," Renewable Energy, Elsevier, vol. 48(C), pages 110-116.
    4. Arash E. Samani & Jeroen D. M. De Kooning & Nezmin Kayedpour & Narender Singh & Lieven Vandevelde, 2020. "The Impact of Pitch-To-Stall and Pitch-To-Feather Control on the Structural Loads and the Pitch Mechanism of a Wind Turbine," Energies, MDPI, vol. 13(17), pages 1-21, September.
    5. García, Fausto P. & Pedregal, Diego J. & Roberts, Clive, 2010. "Time series methods applied to failure prediction and detection," Reliability Engineering and System Safety, Elsevier, vol. 95(6), pages 698-703.
    6. Staffell, Iain & Green, Richard, 2014. "How does wind farm performance decline with age?," Renewable Energy, Elsevier, vol. 66(C), pages 775-786.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mehrjoo, Mehrdad & Jafari Jozani, Mohammad & Pawlak, Miroslaw, 2021. "Toward hybrid approaches for wind turbine power curve modeling with balanced loss functions and local weighting schemes," Energy, Elsevier, vol. 218(C).
    2. Jin, Xin & Ju, Wenbin & Zhang, Zhaolong & Guo, Lianxin & Yang, Xiangang, 2016. "System safety analysis of large wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1293-1307.
    3. Xin Wu & Hong Wang & Guoqian Jiang & Ping Xie & Xiaoli Li, 2019. "Monitoring Wind Turbine Gearbox with Echo State Network Modeling and Dynamic Threshold Using SCADA Vibration Data," Energies, MDPI, vol. 12(6), pages 1-19, March.
    4. Rodríguez-López, Miguel A. & López-González, Luis M. & López-Ochoa, Luis M. & Las-Heras-Casas, Jesús, 2016. "Development of indicators for the detection of equipment malfunctions and degradation estimation based on digital signals (alarms and events) from operation SCADA," Renewable Energy, Elsevier, vol. 99(C), pages 224-236.
    5. Ana Rita Nunes & Hugo Morais & Alberto Sardinha, 2021. "Use of Learning Mechanisms to Improve the Condition Monitoring of Wind Turbine Generators: A Review," Energies, MDPI, vol. 14(21), pages 1-22, November.
    6. Yingying Zhao & Dongsheng Li & Ao Dong & Dahai Kang & Qin Lv & Li Shang, 2017. "Fault Prediction and Diagnosis of Wind Turbine Generators Using SCADA Data," Energies, MDPI, vol. 10(8), pages 1-17, August.
    7. Vera-Tudela, Luis & Kühn, Martin, 2017. "Analysing wind turbine fatigue load prediction: The impact of wind farm flow conditions," Renewable Energy, Elsevier, vol. 107(C), pages 352-360.
    8. Marugán, Alberto Pliego & Márquez, Fausto Pedro García & Perez, Jesus María Pinar & Ruiz-Hernández, Diego, 2018. "A survey of artificial neural network in wind energy systems," Applied Energy, Elsevier, vol. 228(C), pages 1822-1836.
    9. Cho, Seongpil & Choi, Minjoo & Gao, Zhen & Moan, Torgeir, 2021. "Fault detection and diagnosis of a blade pitch system in a floating wind turbine based on Kalman filters and artificial neural networks," Renewable Energy, Elsevier, vol. 169(C), pages 1-13.
    10. Sun, Peng & Li, Jian & Wang, Caisheng & Lei, Xiao, 2016. "A generalized model for wind turbine anomaly identification based on SCADA data," Applied Energy, Elsevier, vol. 168(C), pages 550-567.
    11. Igba, Joel & Alemzadeh, Kazem & Durugbo, Christopher & Henningsen, Keld, 2015. "Performance assessment of wind turbine gearboxes using in-service data: Current approaches and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 144-159.
    12. Benedikt Wiese & Niels L. Pedersen & Esmaeil S. Nadimi & Jürgen Herp, 2020. "Estimating the Remaining Power Generation of Wind Turbines—An Exploratory Study for Main Bearing Failures," Energies, MDPI, vol. 13(13), pages 1-11, July.
    13. Cambron, P. & Lepvrier, R. & Masson, C. & Tahan, A. & Pelletier, F., 2016. "Power curve monitoring using weighted moving average control charts," Renewable Energy, Elsevier, vol. 94(C), pages 126-135.
    14. Hong Wang & Hongbin Wang & Guoqian Jiang & Jimeng Li & Yueling Wang, 2019. "Early Fault Detection of Wind Turbines Based on Operational Condition Clustering and Optimized Deep Belief Network Modeling," Energies, MDPI, vol. 12(6), pages 1-22, March.
    15. Abdul Ghani Olabi & Tabbi Wilberforce & Khaled Elsaid & Enas Taha Sayed & Tareq Salameh & Mohammad Ali Abdelkareem & Ahmad Baroutaji, 2021. "A Review on Failure Modes of Wind Turbine Components," Energies, MDPI, vol. 14(17), pages 1-44, August.
    16. Igba, Joel & Alemzadeh, Kazem & Durugbo, Christopher & Eiriksson, Egill Thor, 2016. "Analysing RMS and peak values of vibration signals for condition monitoring of wind turbine gearboxes," Renewable Energy, Elsevier, vol. 91(C), pages 90-106.
    17. Pliego Marugán, Alberto & Peco Chacón, Ana María & García Márquez, Fausto Pedro, 2019. "Reliability analysis of detecting false alarms that employ neural networks: A real case study on wind turbines," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    18. Li, Yanting & Liu, Shujun & Shu, Lianjie, 2019. "Wind turbine fault diagnosis based on Gaussian process classifiers applied to operational data," Renewable Energy, Elsevier, vol. 134(C), pages 357-366.
    19. Tongke Yuan & Zhifeng Sun & Shihao Ma, 2019. "Gearbox Fault Prediction of Wind Turbines Based on a Stacking Model and Change-Point Detection," Energies, MDPI, vol. 12(22), pages 1-20, November.
    20. Helbing, Georg & Ritter, Matthias, 2018. "Deep Learning for fault detection in wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 189-198.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2851-:d:1101468. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.