IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v99y2016icp224-236.html
   My bibliography  Save this article

Development of indicators for the detection of equipment malfunctions and degradation estimation based on digital signals (alarms and events) from operation SCADA

Author

Listed:
  • Rodríguez-López, Miguel A.
  • López-González, Luis M.
  • López-Ochoa, Luis M.
  • Las-Heras-Casas, Jesús

Abstract

Certain mechanical and electrical components, such as generators, exhibit degradation phenomena, which may develop slowly over time or suddenly. The current trend in this field of research is to develop malfunction detection indicators from analog signals recorded by operation supervisory control and data acquisition (SCADA), creating behavioral models of the equipment and the development of a series of status indicators. These models and indicators are used to detect malfunctions when operation SCADA are unable to detect an abnormality, thus determining that the component is beginning to degrade when certain normal limits are exceeded. However, the digital signals from operation SCADA have great potential for providing additional information that could be used to detect possible malfunction. Detection must be accompanied by a study of the remaining life of a component so that the remaining useful life of the component before failure can be estimated before losing its functionality. If SCADA can detect a malfunction and determine when the component will break, the operator will have valuable time to intervene prior to failure at an optimum time. This is particularly important in installations with difficult access, such as offshore wind farms.

Suggested Citation

  • Rodríguez-López, Miguel A. & López-González, Luis M. & López-Ochoa, Luis M. & Las-Heras-Casas, Jesús, 2016. "Development of indicators for the detection of equipment malfunctions and degradation estimation based on digital signals (alarms and events) from operation SCADA," Renewable Energy, Elsevier, vol. 99(C), pages 224-236.
  • Handle: RePEc:eee:renene:v:99:y:2016:i:c:p:224-236
    DOI: 10.1016/j.renene.2016.06.056
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116305808
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.06.056?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Wenbin & Hussin, B. & Jefferis, Tim, 2012. "A case study of condition based maintenance modelling based upon the oil analysis data of marine diesel engines using stochastic filtering," International Journal of Production Economics, Elsevier, vol. 136(1), pages 84-92.
    2. Rostek, Kornel & Morytko, Łukasz & Jankowska, Anna, 2015. "Early detection and prediction of leaks in fluidized-bed boilers using artificial neural networks," Energy, Elsevier, vol. 89(C), pages 914-923.
    3. Suganthi, L. & Iniyan, S. & Samuel, Anand A., 2015. "Applications of fuzzy logic in renewable energy systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 585-607.
    4. Si, Xiao-Sheng & Wang, Wenbin & Hu, Chang-Hua & Zhou, Dong-Hua, 2011. "Remaining useful life estimation - A review on the statistical data driven approaches," European Journal of Operational Research, Elsevier, vol. 213(1), pages 1-14, August.
    5. Kusiak, Andrew & Zhang, Zijun & Verma, Anoop, 2013. "Prediction, operations, and condition monitoring in wind energy," Energy, Elsevier, vol. 60(C), pages 1-12.
    6. Kusiak, Andrew & Verma, Anoop, 2012. "Analyzing bearing faults in wind turbines: A data-mining approach," Renewable Energy, Elsevier, vol. 48(C), pages 110-116.
    7. Cross, Philip & Ma, Xiandong, 2014. "Nonlinear system identification for model-based condition monitoring of wind turbines," Renewable Energy, Elsevier, vol. 71(C), pages 166-175.
    8. Kandukuri, Surya Teja & Klausen, Andreas & Karimi, Hamid Reza & Robbersmyr, Kjell Gunnar, 2016. "A review of diagnostics and prognostics of low-speed machinery towards wind turbine farm-level health management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 697-708.
    9. Kusiak, Andrew & Li, Wenyan, 2011. "The prediction and diagnosis of wind turbine faults," Renewable Energy, Elsevier, vol. 36(1), pages 16-23.
    10. Hameed, Z. & Hong, Y.S. & Cho, Y.M. & Ahn, S.H. & Song, C.K., 2009. "Condition monitoring and fault detection of wind turbines and related algorithms: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(1), pages 1-39, January.
    11. Odgaard, Peter Fogh & Larsen, Lars F.S. & Wisniewski, Rafael & Hovgaard, Tobias Gybel, 2016. "On using Pareto optimality to tune a linear model predictive controller for wind turbines," Renewable Energy, Elsevier, vol. 87(P2), pages 884-891.
    12. García Márquez, Fausto Pedro & Tobias, Andrew Mark & Pinar Pérez, Jesús María & Papaelias, Mayorkinos, 2012. "Condition monitoring of wind turbines: Techniques and methods," Renewable Energy, Elsevier, vol. 46(C), pages 169-178.
    13. Liu, W.Y. & Tang, B.P. & Han, J.G. & Lu, X.N. & Hu, N.N. & He, Z.Z., 2015. "The structure healthy condition monitoring and fault diagnosis methods in wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 466-472.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miguel A. Rodríguez-López & Luis M. López-González & Luis M. López-Ochoa & Jesús Las-Heras-Casas, 2018. "Methodology for Detecting Malfunctions and Evaluating the Maintenance Effectiveness in Wind Turbine Generator Bearings Using Generic versus Specific Models from SCADA Data," Energies, MDPI, vol. 11(4), pages 1-22, March.
    2. Angel Gil & Miguel A. Sanz-Bobi & Miguel A. Rodríguez-López, 2018. "Behavior Anomaly Indicators Based on Reference Patterns—Application to the Gearbox and Electrical Generator of a Wind Turbine," Energies, MDPI, vol. 11(1), pages 1-15, January.
    3. Cristian Velandia-Cardenas & Yolanda Vidal & Francesc Pozo, 2021. "Wind Turbine Fault Detection Using Highly Imbalanced Real SCADA Data," Energies, MDPI, vol. 14(6), pages 1-26, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miguel A. Rodríguez-López & Luis M. López-González & Luis M. López-Ochoa & Jesús Las-Heras-Casas, 2018. "Methodology for Detecting Malfunctions and Evaluating the Maintenance Effectiveness in Wind Turbine Generator Bearings Using Generic versus Specific Models from SCADA Data," Energies, MDPI, vol. 11(4), pages 1-22, March.
    2. Li, Yanting & Liu, Shujun & Shu, Lianjie, 2019. "Wind turbine fault diagnosis based on Gaussian process classifiers applied to operational data," Renewable Energy, Elsevier, vol. 134(C), pages 357-366.
    3. Sun, Peng & Li, Jian & Wang, Caisheng & Lei, Xiao, 2016. "A generalized model for wind turbine anomaly identification based on SCADA data," Applied Energy, Elsevier, vol. 168(C), pages 550-567.
    4. Masoud Asgarpour & John Dalsgaard Sørensen, 2018. "Bayesian Based Diagnostic Model for Condition Based Maintenance of Offshore Wind Farms," Energies, MDPI, vol. 11(2), pages 1-17, January.
    5. Jin, Xin & Ju, Wenbin & Zhang, Zhaolong & Guo, Lianxin & Yang, Xiangang, 2016. "System safety analysis of large wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1293-1307.
    6. Artigao, Estefania & Martín-Martínez, Sergio & Honrubia-Escribano, Andrés & Gómez-Lázaro, Emilio, 2018. "Wind turbine reliability: A comprehensive review towards effective condition monitoring development," Applied Energy, Elsevier, vol. 228(C), pages 1569-1583.
    7. Igba, Joel & Alemzadeh, Kazem & Durugbo, Christopher & Henningsen, Keld, 2015. "Performance assessment of wind turbine gearboxes using in-service data: Current approaches and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 144-159.
    8. Igba, Joel & Alemzadeh, Kazem & Durugbo, Christopher & Eiriksson, Egill Thor, 2016. "Analysing RMS and peak values of vibration signals for condition monitoring of wind turbine gearboxes," Renewable Energy, Elsevier, vol. 91(C), pages 90-106.
    9. Giovanni Rinaldi & Philipp R. Thies & Lars Johanning, 2021. "Current Status and Future Trends in the Operation and Maintenance of Offshore Wind Turbines: A Review," Energies, MDPI, vol. 14(9), pages 1-28, April.
    10. Ruiz de la Hermosa González-Carrato, Raúl & García Márquez, Fausto Pedro & Dimlaye, Vichaar, 2015. "Maintenance management of wind turbines structures via MFCs and wavelet transforms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 472-482.
    11. Xin Wu & Hong Wang & Guoqian Jiang & Ping Xie & Xiaoli Li, 2019. "Monitoring Wind Turbine Gearbox with Echo State Network Modeling and Dynamic Threshold Using SCADA Vibration Data," Energies, MDPI, vol. 12(6), pages 1-19, March.
    12. Ana Rita Nunes & Hugo Morais & Alberto Sardinha, 2021. "Use of Learning Mechanisms to Improve the Condition Monitoring of Wind Turbine Generators: A Review," Energies, MDPI, vol. 14(21), pages 1-22, November.
    13. Yingying Zhao & Dongsheng Li & Ao Dong & Dahai Kang & Qin Lv & Li Shang, 2017. "Fault Prediction and Diagnosis of Wind Turbine Generators Using SCADA Data," Energies, MDPI, vol. 10(8), pages 1-17, August.
    14. Bakir, I. & Yildirim, M. & Ursavas, E., 2021. "An integrated optimization framework for multi-component predictive analytics in wind farm operations & maintenance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    15. Pere Marti-Puig & Alejandro Blanco-M & Juan José Cárdenas & Jordi Cusidó & Jordi Solé-Casals, 2019. "Feature Selection Algorithms for Wind Turbine Failure Prediction," Energies, MDPI, vol. 12(3), pages 1-18, January.
    16. Abdul Ghani Olabi & Tabbi Wilberforce & Khaled Elsaid & Enas Taha Sayed & Tareq Salameh & Mohammad Ali Abdelkareem & Ahmad Baroutaji, 2021. "A Review on Failure Modes of Wind Turbine Components," Energies, MDPI, vol. 14(17), pages 1-44, August.
    17. Fallahi, F. & Bakir, I. & Yildirim, M. & Ye, Z., 2022. "A chance-constrained optimization framework for wind farms to manage fleet-level availability in condition based maintenance and operations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    18. Pliego Marugán, Alberto & Peco Chacón, Ana María & García Márquez, Fausto Pedro, 2019. "Reliability analysis of detecting false alarms that employ neural networks: A real case study on wind turbines," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    19. Helbing, Georg & Ritter, Matthias, 2018. "Deep Learning for fault detection in wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 189-198.
    20. Chen, Junsheng & Li, Jian & Chen, Weigen & Wang, Youyuan & Jiang, Tianyan, 2020. "Anomaly detection for wind turbines based on the reconstruction of condition parameters using stacked denoising autoencoders," Renewable Energy, Elsevier, vol. 147(P1), pages 1469-1480.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:99:y:2016:i:c:p:224-236. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.