IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v107y2017icp352-360.html
   My bibliography  Save this article

Analysing wind turbine fatigue load prediction: The impact of wind farm flow conditions

Author

Listed:
  • Vera-Tudela, Luis
  • Kühn, Martin

Abstract

Lifetime evaluation with fatigue loads is commonly used in the design phase of wind turbines, but rarely during operation due to the cost of extra measurements. Fatigue load prediction with neural networks, using existing SCADA signals, is a potential cost-effective alternative to continuously monitor lifetime consumption. However, although assessments for turbines in wind farm flow have been pointed out as deficient, the evaluations were limited to single cases and the implication for the design of a monitoring system was not discussed. Hence, we proposed metrics to evaluate prediction quality and, using one year of measurements at two wind turbines, we evaluated predictions in six different flow conditions. The quality of fatigue load predictions were evaluated for bending moments of two blades, in edgewise and flapwise directions. Results, based on 48 analyses, demonstrated that prediction quality varies marginally with varying flow conditions. Predictions were accurate in all cases and had an average error below 1.5%, but their precision slightly deteriorated in wake flow conditions. In general, results demonstrated that a reasonable monitoring system can be based on a neural network model without the need to distinguish between inflow conditions.

Suggested Citation

  • Vera-Tudela, Luis & Kühn, Martin, 2017. "Analysing wind turbine fatigue load prediction: The impact of wind farm flow conditions," Renewable Energy, Elsevier, vol. 107(C), pages 352-360.
  • Handle: RePEc:eee:renene:v:107:y:2017:i:c:p:352-360
    DOI: 10.1016/j.renene.2017.01.065
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117300757
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.01.065?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kusiak, Andrew & Li, Wenyan, 2011. "The prediction and diagnosis of wind turbine faults," Renewable Energy, Elsevier, vol. 36(1), pages 16-23.
    2. Kusiak, Andrew & Verma, Anoop, 2012. "Analyzing bearing faults in wind turbines: A data-mining approach," Renewable Energy, Elsevier, vol. 48(C), pages 110-116.
    3. Kusiak, Andrew & Zheng, Haiyang & Song, Zhe, 2010. "Power optimization of wind turbines with data mining and evolutionary computation," Renewable Energy, Elsevier, vol. 35(3), pages 695-702.
    4. Kusiak, Andrew & Li, Wenyan, 2010. "Short-term prediction of wind power with a clustering approach," Renewable Energy, Elsevier, vol. 35(10), pages 2362-2369.
    5. Kusiak, Andrew & Zhang, Zijun, 2012. "Control of wind turbine power and vibration with a data-driven approach," Renewable Energy, Elsevier, vol. 43(C), pages 73-82.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. de N Santos, Francisco & D’Antuono, Pietro & Robbelein, Koen & Noppe, Nymfa & Weijtjens, Wout & Devriendt, Christof, 2023. "Long-term fatigue estimation on offshore wind turbines interface loads through loss function physics-guided learning of neural networks," Renewable Energy, Elsevier, vol. 205(C), pages 461-474.
    2. Marugán, Alberto Pliego & Márquez, Fausto Pedro García & Perez, Jesus María Pinar & Ruiz-Hernández, Diego, 2018. "A survey of artificial neural network in wind energy systems," Applied Energy, Elsevier, vol. 228(C), pages 1822-1836.
    3. Rommel, D.P. & Di Maio, D. & Tinga, T., 2020. "Calculating wind turbine component loads for improved life prediction," Renewable Energy, Elsevier, vol. 146(C), pages 223-241.
    4. He, Ruiyang & Yang, Hongxing & Sun, Shilin & Lu, Lin & Sun, Haiying & Gao, Xiaoxia, 2022. "A machine learning-based fatigue loads and power prediction method for wind turbines under yaw control," Applied Energy, Elsevier, vol. 326(C).
    5. Antoine Chrétien & Antoine Tahan & Philippe Cambron & Adaiton Oliveira-Filho, 2023. "Operational Wind Turbine Blade Damage Evaluation Based on 10-min SCADA and 1 Hz Data," Energies, MDPI, vol. 16(7), pages 1-18, March.
    6. Rad Haghi & Cassidy Stagg & Curran Crawford, 2024. "Wind Turbine Damage Equivalent Load Assessment Using Gaussian Process Regression Combining Measurement and Synthetic Data," Energies, MDPI, vol. 17(2), pages 1-24, January.
    7. Antoine Chrétien & Antoine Tahan & Francis Pelletier, 2024. "Wind Turbine Blade Damage Evaluation under Multiple Operating Conditions and Based on 10-Min SCADA Data," Energies, MDPI, vol. 17(5), pages 1-21, March.
    8. Francesco Castellani & Marco Buzzoni & Davide Astolfi & Gianluca D’Elia & Giorgio Dalpiaz & Ludovico Terzi, 2017. "Wind Turbine Loads Induced by Terrain and Wakes: An Experimental Study through Vibration Analysis and Computational Fluid Dynamics," Energies, MDPI, vol. 10(11), pages 1-19, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kusiak, Andrew & Zhang, Zijun & Verma, Anoop, 2013. "Prediction, operations, and condition monitoring in wind energy," Energy, Elsevier, vol. 60(C), pages 1-12.
    2. Miguel A. Rodríguez-López & Luis M. López-González & Luis M. López-Ochoa & Jesús Las-Heras-Casas, 2018. "Methodology for Detecting Malfunctions and Evaluating the Maintenance Effectiveness in Wind Turbine Generator Bearings Using Generic versus Specific Models from SCADA Data," Energies, MDPI, vol. 11(4), pages 1-22, March.
    3. Jin, Xin & Ju, Wenbin & Zhang, Zhaolong & Guo, Lianxin & Yang, Xiangang, 2016. "System safety analysis of large wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1293-1307.
    4. Colak, Ilhami & Sagiroglu, Seref & Yesilbudak, Mehmet, 2012. "Data mining and wind power prediction: A literature review," Renewable Energy, Elsevier, vol. 46(C), pages 241-247.
    5. Xin Wu & Hong Wang & Guoqian Jiang & Ping Xie & Xiaoli Li, 2019. "Monitoring Wind Turbine Gearbox with Echo State Network Modeling and Dynamic Threshold Using SCADA Vibration Data," Energies, MDPI, vol. 12(6), pages 1-19, March.
    6. Rodríguez-López, Miguel A. & López-González, Luis M. & López-Ochoa, Luis M. & Las-Heras-Casas, Jesús, 2016. "Development of indicators for the detection of equipment malfunctions and degradation estimation based on digital signals (alarms and events) from operation SCADA," Renewable Energy, Elsevier, vol. 99(C), pages 224-236.
    7. Ana Rita Nunes & Hugo Morais & Alberto Sardinha, 2021. "Use of Learning Mechanisms to Improve the Condition Monitoring of Wind Turbine Generators: A Review," Energies, MDPI, vol. 14(21), pages 1-22, November.
    8. Yingying Zhao & Dongsheng Li & Ao Dong & Dahai Kang & Qin Lv & Li Shang, 2017. "Fault Prediction and Diagnosis of Wind Turbine Generators Using SCADA Data," Energies, MDPI, vol. 10(8), pages 1-17, August.
    9. Konstantinos Konstas & Panos T. Chountalas & Eleni A. Didaskalou & Dimitrios A. Georgakellos, 2023. "A Pragmatic Framework for Data-Driven Decision-Making Process in the Energy Sector: Insights from a Wind Farm Case Study," Energies, MDPI, vol. 16(17), pages 1-26, August.
    10. Hong Wang & Hongbin Wang & Guoqian Jiang & Jimeng Li & Yueling Wang, 2019. "Early Fault Detection of Wind Turbines Based on Operational Condition Clustering and Optimized Deep Belief Network Modeling," Energies, MDPI, vol. 12(6), pages 1-22, March.
    11. Li, Yanting & Liu, Shujun & Shu, Lianjie, 2019. "Wind turbine fault diagnosis based on Gaussian process classifiers applied to operational data," Renewable Energy, Elsevier, vol. 134(C), pages 357-366.
    12. Helbing, Georg & Ritter, Matthias, 2018. "Deep Learning for fault detection in wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 189-198.
    13. Narender Singh & Dibakor Boruah & Jeroen D. M. De Kooning & Wim De Waele & Lieven Vandevelde, 2023. "Impact Assessment of Dynamic Loading Induced by the Provision of Frequency Containment Reserve on the Main Bearing Lifetime of a Wind Turbine," Energies, MDPI, vol. 16(6), pages 1-14, March.
    14. Marugán, Alberto Pliego & Márquez, Fausto Pedro García & Perez, Jesus María Pinar & Ruiz-Hernández, Diego, 2018. "A survey of artificial neural network in wind energy systems," Applied Energy, Elsevier, vol. 228(C), pages 1822-1836.
    15. Cho, Seongpil & Choi, Minjoo & Gao, Zhen & Moan, Torgeir, 2021. "Fault detection and diagnosis of a blade pitch system in a floating wind turbine based on Kalman filters and artificial neural networks," Renewable Energy, Elsevier, vol. 169(C), pages 1-13.
    16. Sun, Peng & Li, Jian & Wang, Caisheng & Lei, Xiao, 2016. "A generalized model for wind turbine anomaly identification based on SCADA data," Applied Energy, Elsevier, vol. 168(C), pages 550-567.
    17. Igba, Joel & Alemzadeh, Kazem & Durugbo, Christopher & Henningsen, Keld, 2015. "Performance assessment of wind turbine gearboxes using in-service data: Current approaches and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 144-159.
    18. Benedikt Wiese & Niels L. Pedersen & Esmaeil S. Nadimi & Jürgen Herp, 2020. "Estimating the Remaining Power Generation of Wind Turbines—An Exploratory Study for Main Bearing Failures," Energies, MDPI, vol. 13(13), pages 1-11, July.
    19. Marvuglia, Antonino & Messineo, Antonio, 2012. "Monitoring of wind farms’ power curves using machine learning techniques," Applied Energy, Elsevier, vol. 98(C), pages 574-583.
    20. Igba, Joel & Alemzadeh, Kazem & Durugbo, Christopher & Eiriksson, Egill Thor, 2016. "Analysing RMS and peak values of vibration signals for condition monitoring of wind turbine gearboxes," Renewable Energy, Elsevier, vol. 91(C), pages 90-106.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:107:y:2017:i:c:p:352-360. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.