IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i6p984-d213672.html
   My bibliography  Save this article

Early Fault Detection of Wind Turbines Based on Operational Condition Clustering and Optimized Deep Belief Network Modeling

Author

Listed:
  • Hong Wang

    (School of Electrical Engineering, Yanshan University, No. 438, Hebei Avenue, Qinhuangdao 066004, China)

  • Hongbin Wang

    (School of Electrical Engineering, Yanshan University, No. 438, Hebei Avenue, Qinhuangdao 066004, China)

  • Guoqian Jiang

    (School of Electrical Engineering, Yanshan University, No. 438, Hebei Avenue, Qinhuangdao 066004, China)

  • Jimeng Li

    (School of Electrical Engineering, Yanshan University, No. 438, Hebei Avenue, Qinhuangdao 066004, China)

  • Yueling Wang

    (School of Electrical Engineering, Yanshan University, No. 438, Hebei Avenue, Qinhuangdao 066004, China)

Abstract

Health monitoring and early fault detection of wind turbines have attracted considerable attention due to the benefits of improving reliability and reducing the operation and maintenance costs of the turbine. However, dynamic and constantly changing operating conditions of wind turbines still pose great challenges to effective and reliable fault detection. Most existing health monitoring approaches mainly focus on one single operating condition, so these methods cannot assess the health status of turbines accurately, leading to unsatisfactory detection performance. To this end, this paper proposes a novel general health monitoring framework for wind turbines based on supervisory control and data acquisition (SCADA) data. A key feature of the proposed framework is that it first partitions the turbine operation into multiple sub-operation conditions by the clustering approach and then builds a normal turbine behavior model for each sub-operation condition. For normal behavior modeling, an optimized deep belief network is proposed. This optimized modeling method can capture the sophisticated nonlinear correlations among different monitoring variables, which is helpful to enhance the prediction performance. A case study of main bearing fault detection using real SCADA data is used to validate the proposed approach, which demonstrates its effectiveness and advantages.

Suggested Citation

  • Hong Wang & Hongbin Wang & Guoqian Jiang & Jimeng Li & Yueling Wang, 2019. "Early Fault Detection of Wind Turbines Based on Operational Condition Clustering and Optimized Deep Belief Network Modeling," Energies, MDPI, vol. 12(6), pages 1-22, March.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:6:p:984-:d:213672
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/6/984/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/6/984/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lapira, Edzel & Brisset, Dustin & Davari Ardakani, Hossein & Siegel, David & Lee, Jay, 2012. "Wind turbine performance assessment using multi-regime modeling approach," Renewable Energy, Elsevier, vol. 45(C), pages 86-95.
    2. Bi, Ran & Zhou, Chengke & Hepburn, Donald M., 2017. "Detection and classification of faults in pitch-regulated wind turbine generators using normal behaviour models based on performance curves," Renewable Energy, Elsevier, vol. 105(C), pages 674-688.
    3. Kusiak, Andrew & Verma, Anoop, 2012. "Analyzing bearing faults in wind turbines: A data-mining approach," Renewable Energy, Elsevier, vol. 48(C), pages 110-116.
    4. Yang, Hsu-Hao & Huang, Mei-Ling & Lai, Chun-Mei & Jin, Jhih-Rong, 2018. "An approach combining data mining and control charts-based model for fault detection in wind turbines," Renewable Energy, Elsevier, vol. 115(C), pages 808-816.
    5. Peyman Mazidi & Lina Bertling Tjernberg & Miguel A Sanz Bobi, 2017. "Wind turbine prognostics and maintenance management based on a hybrid approach of neural networks and a proportional hazards model," Journal of Risk and Reliability, , vol. 231(2), pages 121-129, April.
    6. Kusiak, Andrew & Li, Wenyan, 2011. "The prediction and diagnosis of wind turbine faults," Renewable Energy, Elsevier, vol. 36(1), pages 16-23.
    7. Pierre Tchakoua & René Wamkeue & Mohand Ouhrouche & Fouad Slaoui-Hasnaoui & Tommy Andy Tameghe & Gabriel Ekemb, 2014. "Wind Turbine Condition Monitoring: State-of-the-Art Review, New Trends, and Future Challenges," Energies, MDPI, vol. 7(4), pages 1-36, April.
    8. Yang, Wenxian & Court, Richard & Jiang, Jiesheng, 2013. "Wind turbine condition monitoring by the approach of SCADA data analysis," Renewable Energy, Elsevier, vol. 53(C), pages 365-376.
    9. Zhi-Xin Yang & Xian-Bo Wang & Jian-Hua Zhong, 2016. "Representational Learning for Fault Diagnosis of Wind Turbine Equipment: A Multi-Layered Extreme Learning Machines Approach," Energies, MDPI, vol. 9(6), pages 1-17, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao Zhang & Xiao He, 2020. "Fault-Structure-Based Active Fault Diagnosis: A Geometric Observer Approach," Energies, MDPI, vol. 13(17), pages 1-17, August.
    2. Yolanda Vidal, 2023. "Artificial Intelligence for Wind Turbine Condition Monitoring," Energies, MDPI, vol. 16(4), pages 1-4, February.
    3. Huanguo Chen & Chao Xie & Juchuan Dai & Enjie Cen & Jianmin Li, 2021. "SCADA Data-Based Working Condition Classification for Condition Assessment of Wind Turbine Main Transmission System," Energies, MDPI, vol. 14(21), pages 1-18, October.
    4. Tongke Yuan & Zhifeng Sun & Shihao Ma, 2019. "Gearbox Fault Prediction of Wind Turbines Based on a Stacking Model and Change-Point Detection," Energies, MDPI, vol. 12(22), pages 1-20, November.
    5. Yuanyuan Yang & Md Muhie Menul Haque & Dongling Bai & Wei Tang, 2021. "Fault Diagnosis of Electric Motors Using Deep Learning Algorithms and Its Application: A Review," Energies, MDPI, vol. 14(21), pages 1-26, October.
    6. Wu, Yueqi & Ma, Xiandong, 2022. "A hybrid LSTM-KLD approach to condition monitoring of operational wind turbines," Renewable Energy, Elsevier, vol. 181(C), pages 554-566.
    7. Jinxin Wang & Zhongwei Wang & Xiuzhen Ma & Guojin Feng & Chi Zhang, 2020. "Locating Sensors in Complex Engineering Systems for Fault Isolation Using Population-Based Incremental Learning," Energies, MDPI, vol. 13(2), pages 1-14, January.
    8. Ruijun Guo & Guobin Zhang & Qian Zhang & Lei Zhou & Haicun Yu & Meng Lei & You Lv, 2021. "An Adaptive Early Fault Detection Model of Induced Draft Fans Based on Multivariate State Estimation Technique," Energies, MDPI, vol. 14(16), pages 1-18, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xin Wu & Hong Wang & Guoqian Jiang & Ping Xie & Xiaoli Li, 2019. "Monitoring Wind Turbine Gearbox with Echo State Network Modeling and Dynamic Threshold Using SCADA Vibration Data," Energies, MDPI, vol. 12(6), pages 1-19, March.
    2. Ana Rita Nunes & Hugo Morais & Alberto Sardinha, 2021. "Use of Learning Mechanisms to Improve the Condition Monitoring of Wind Turbine Generators: A Review," Energies, MDPI, vol. 14(21), pages 1-22, November.
    3. Stetco, Adrian & Dinmohammadi, Fateme & Zhao, Xingyu & Robu, Valentin & Flynn, David & Barnes, Mike & Keane, John & Nenadic, Goran, 2019. "Machine learning methods for wind turbine condition monitoring: A review," Renewable Energy, Elsevier, vol. 133(C), pages 620-635.
    4. Kevin Leahy & Colm Gallagher & Peter O’Donovan & Ken Bruton & Dominic T. J. O’Sullivan, 2018. "A Robust Prescriptive Framework and Performance Metric for Diagnosing and Predicting Wind Turbine Faults Based on SCADA and Alarms Data with Case Study," Energies, MDPI, vol. 11(7), pages 1-21, July.
    5. Artigao, Estefania & Martín-Martínez, Sergio & Honrubia-Escribano, Andrés & Gómez-Lázaro, Emilio, 2018. "Wind turbine reliability: A comprehensive review towards effective condition monitoring development," Applied Energy, Elsevier, vol. 228(C), pages 1569-1583.
    6. Sun, Peng & Li, Jian & Wang, Caisheng & Lei, Xiao, 2016. "A generalized model for wind turbine anomaly identification based on SCADA data," Applied Energy, Elsevier, vol. 168(C), pages 550-567.
    7. Peng Sun & Jian Li & Junsheng Chen & Xiao Lei, 2016. "A Short-Term Outage Model of Wind Turbines with Doubly Fed Induction Generators Based on Supervisory Control and Data Acquisition Data," Energies, MDPI, vol. 9(11), pages 1-21, October.
    8. Jorge Maldonado-Correa & Sergio Martín-Martínez & Estefanía Artigao & Emilio Gómez-Lázaro, 2020. "Using SCADA Data for Wind Turbine Condition Monitoring: A Systematic Literature Review," Energies, MDPI, vol. 13(12), pages 1-21, June.
    9. Yingying Zhao & Dongsheng Li & Ao Dong & Dahai Kang & Qin Lv & Li Shang, 2017. "Fault Prediction and Diagnosis of Wind Turbine Generators Using SCADA Data," Energies, MDPI, vol. 10(8), pages 1-17, August.
    10. de Azevedo, Henrique Dias Machado & Araújo, Alex Maurício & Bouchonneau, Nadège, 2016. "A review of wind turbine bearing condition monitoring: State of the art and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 368-379.
    11. Igba, Joel & Alemzadeh, Kazem & Durugbo, Christopher & Henningsen, Keld, 2015. "Performance assessment of wind turbine gearboxes using in-service data: Current approaches and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 144-159.
    12. Aziz, Usama & Charbonnier, Sylvie & Bérenguer, Christophe & Lebranchu, Alexis & Prevost, Frederic, 2021. "Critical comparison of power-based wind turbine fault-detection methods using a realistic framework for SCADA data simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    13. Yuri Merizalde & Luis Hernández-Callejo & Oscar Duque-Perez & Víctor Alonso-Gómez, 2019. "Maintenance Models Applied to Wind Turbines. A Comprehensive Overview," Energies, MDPI, vol. 12(2), pages 1-41, January.
    14. Mérigaud, Alexis & Ringwood, John V., 2016. "Condition-based maintenance methods for marine renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 53-78.
    15. Igba, Joel & Alemzadeh, Kazem & Durugbo, Christopher & Eiriksson, Egill Thor, 2016. "Analysing RMS and peak values of vibration signals for condition monitoring of wind turbine gearboxes," Renewable Energy, Elsevier, vol. 91(C), pages 90-106.
    16. Annalisa Santolamazza & Daniele Dadi & Vito Introna, 2021. "A Data-Mining Approach for Wind Turbine Fault Detection Based on SCADA Data Analysis Using Artificial Neural Networks," Energies, MDPI, vol. 14(7), pages 1-25, March.
    17. Cheng Xiao & Zuojun Liu & Tieling Zhang & Lei Zhang, 2019. "On Fault Prediction for Wind Turbine Pitch System Using Radar Chart and Support Vector Machine Approach," Energies, MDPI, vol. 12(14), pages 1-18, July.
    18. Long, Lijia & Mai, Quang Anh & Morato, Pablo Gabriel & Sørensen, John Dalsgaard & Thöns, Sebastian, 2020. "Information value-based optimization of structural and environmental monitoring for offshore wind turbines support structures," Renewable Energy, Elsevier, vol. 159(C), pages 1036-1046.
    19. Tongke Yuan & Zhifeng Sun & Shihao Ma, 2019. "Gearbox Fault Prediction of Wind Turbines Based on a Stacking Model and Change-Point Detection," Energies, MDPI, vol. 12(22), pages 1-20, November.
    20. Ruiz de la Hermosa González-Carrato, Raúl, 2018. "Wind farm monitoring using Mahalanobis distance and fuzzy clustering," Renewable Energy, Elsevier, vol. 123(C), pages 526-540.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:6:p:984-:d:213672. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.