IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v152y2018icp759-769.html
   My bibliography  Save this article

Power fluctuation smoothing and loss reduction in grid integrated with thermal-wind-solar-storage units

Author

Listed:
  • Hemmati, Reza
  • Ghiasi, Seyyed Mohammad Sadegh
  • Entezariharsini, Azam

Abstract

This paper aims at utilizing energy storage systems for two purposes at the same time including smoothing the uncertainties of wind-solar units as well as reduction of network losses. In order to achieve these objectives, IEEE 24-bus test system is considered as case study. This network is integrated with wind turbine and solar system. The output powers of wind and solar units are modeled by probability distribution function. The energy storage systems are installed on the network to smooth out the uncertainty as well as loss reduction. The network is modeled by AC power flow including both active-reactive power. The problem of finding location, power, capacity, and charging-discharging pattern of energy storage systems is expressed as nonlinear mixed integer optimization stochastic programming. The uncertainties are handled by Monte-Carlo simulation and the proposed stochastic programming is solved by modified particle swarm optimization algorithm. The results demonstrate that the proposed stochastic programming can efficiently install energy storage systems on the network. The problem finds optimal siting, sizing, and hourly operation pattern for all energy storage systems, while it minimizes the losses. It is worth mentioning that number of predefined locations for energy storage systems and renewable resources are limited to simplify mathematical formulation of the planning. As well, the proposed methodology can successfully improve network operation by reliving flow in transmission lines and improving voltage on buses. A sensitivity analysis is also carried out to indicate the impacts of the parameters on the planning. All simulations including modeling, solution, and sensitivity analysis are carried out in MATLAB software.

Suggested Citation

  • Hemmati, Reza & Ghiasi, Seyyed Mohammad Sadegh & Entezariharsini, Azam, 2018. "Power fluctuation smoothing and loss reduction in grid integrated with thermal-wind-solar-storage units," Energy, Elsevier, vol. 152(C), pages 759-769.
  • Handle: RePEc:eee:energy:v:152:y:2018:i:c:p:759-769
    DOI: 10.1016/j.energy.2018.04.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218305942
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.04.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chaudhary, Priyanka & Rizwan, M., 2018. "Energy management supporting high penetration of solar photovoltaic generation for smart grid using solar forecasts and pumped hydro storage system," Renewable Energy, Elsevier, vol. 118(C), pages 928-946.
    2. Yi, Tong & Ma, Fei & Jin, Chun & Huang, Yanjun, 2018. "A novel coupled hydro-pneumatic energy storage system for hybrid mining trucks," Energy, Elsevier, vol. 143(C), pages 704-718.
    3. Zhang, Ning & Lu, Xi & McElroy, Michael B. & Nielsen, Chris P. & Chen, Xinyu & Deng, Yu & Kang, Chongqing, 2016. "Reducing curtailment of wind electricity in China by employing electric boilers for heat and pumped hydro for energy storage," Applied Energy, Elsevier, vol. 184(C), pages 987-994.
    4. Mahdavi, Sajad & Hemmati, Reza & Jirdehi, Mehdi Ahmadi, 2018. "Two-level planning for coordination of energy storage systems and wind-solar-diesel units in active distribution networks," Energy, Elsevier, vol. 151(C), pages 954-965.
    5. Zakeri, Behnam & Syri, Sanna, 2015. "Electrical energy storage systems: A comparative life cycle cost analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 569-596.
    6. Moradi, Jalal & Shahinzadeh, Hossein & Khandan, Amirsalar & Moazzami, Majid, 2017. "A profitability investigation into the collaborative operation of wind and underwater compressed air energy storage units in the spot market," Energy, Elsevier, vol. 141(C), pages 1779-1794.
    7. Bornapour, Mosayeb & Hooshmand, Rahmat-Allah & Khodabakhshian, Amin & Parastegari, Moein, 2017. "Optimal stochastic coordinated scheduling of proton exchange membrane fuel cell-combined heat and power, wind and photovoltaic units in micro grids considering hydrogen storage," Applied Energy, Elsevier, vol. 202(C), pages 308-322.
    8. Zhao, Pan & Wang, Jiangfeng & Dai, Yiping, 2015. "Capacity allocation of a hybrid energy storage system for power system peak shaving at high wind power penetration level," Renewable Energy, Elsevier, vol. 75(C), pages 541-549.
    9. Saffari, Mohammad & de Gracia, Alvaro & Fernández, Cèsar & Belusko, Martin & Boer, Dieter & Cabeza, Luisa F., 2018. "Optimized demand side management (DSM) of peak electricity demand by coupling low temperature thermal energy storage (TES) and solar PV," Applied Energy, Elsevier, vol. 211(C), pages 604-616.
    10. Vieira, Filomeno M. & Moura, Pedro S. & de Almeida, Aníbal T., 2017. "Energy storage system for self-consumption of photovoltaic energy in residential zero energy buildings," Renewable Energy, Elsevier, vol. 103(C), pages 308-320.
    11. Tabar, Vahid Sohrabi & Jirdehi, Mehdi Ahmadi & Hemmati, Reza, 2017. "Energy management in microgrid based on the multi objective stochastic programming incorporating portable renewable energy resource as demand response option," Energy, Elsevier, vol. 118(C), pages 827-839.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Bangyan & Wang, Xiuli & Zhu, Zongyao & Wu, Xiong, 2023. "Siting and sizing of energy storage for renewable generation utilization with multi-stage dispatch under uncertainty: A tri-level model and decomposition approach," Applied Energy, Elsevier, vol. 344(C).
    2. Tiago P. Abud & Andre A. Augusto & Marcio Z. Fortes & Renan S. Maciel & Bruno S. M. C. Borba, 2022. "State of the Art Monte Carlo Method Applied to Power System Analysis with Distributed Generation," Energies, MDPI, vol. 16(1), pages 1-24, December.
    3. Chandu Valuva & Subramani Chinnamuthu, 2023. "Performance Analysis of Marine-Predator-Algorithm-Based Optimum PI Controller with Unified Power Flow Controller for Loss Reduction in Wind–Solar Integrated System," Energies, MDPI, vol. 16(17), pages 1-20, August.
    4. Monteiro, Raul V.A. & Guimarães, Geraldo C. & Silva, Fernando Bento & da Silva Teixeira, Raoni F. & Carvalho, Bismarck C. & Finazzi, Antônio de P. & de Vasconcellos, Arnulfo B., 2018. "A medium-term analysis of the reduction in technical losses on distribution systems with variable demand using artificial neural networks: An Electrical Energy Storage approach," Energy, Elsevier, vol. 164(C), pages 1216-1228.
    5. Barra, P.H.A. & Coury, D.V. & Fernandes, R.A.S., 2020. "A survey on adaptive protection of microgrids and distribution systems with distributed generators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    6. Francesco Calise & Francesco Liberato Cappiello & Luca Cimmino & Massimo Dentice d’Accadia & Maria Vicidomini, 2021. "Dynamic Simulation and Thermoeconomic Analysis of a Hybrid Renewable System Based on PV and Fuel Cell Coupled with Hydrogen Storage," Energies, MDPI, vol. 14(22), pages 1-20, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Efstathios E. Michaelides, 2021. "Thermodynamics, Energy Dissipation, and Figures of Merit of Energy Storage Systems—A Critical Review," Energies, MDPI, vol. 14(19), pages 1-41, September.
    2. Morteza Zare Oskouei & Ayşe Aybike Şeker & Süleyman Tunçel & Emin Demirbaş & Tuba Gözel & Mehmet Hakan Hocaoğlu & Mehdi Abapour & Behnam Mohammadi-Ivatloo, 2022. "A Critical Review on the Impacts of Energy Storage Systems and Demand-Side Management Strategies in the Economic Operation of Renewable-Based Distribution Network," Sustainability, MDPI, vol. 14(4), pages 1-34, February.
    3. Lan, Hai & Wen, Shuli & Hong, Ying-Yi & Yu, David C. & Zhang, Lijun, 2015. "Optimal sizing of hybrid PV/diesel/battery in ship power system," Applied Energy, Elsevier, vol. 158(C), pages 26-34.
    4. Muhammad Khalid, 2019. "A Review on the Selected Applications of Battery-Supercapacitor Hybrid Energy Storage Systems for Microgrids," Energies, MDPI, vol. 12(23), pages 1-34, November.
    5. Abdul Ghani Olabi & Tabbi Wilberforce & Mohammad Ali Abdelkareem & Mohamad Ramadan, 2021. "Critical Review of Flywheel Energy Storage System," Energies, MDPI, vol. 14(8), pages 1-33, April.
    6. Zhixian Wang & Ying Wang & Qia Ding & Chen Wang & Kaifeng Zhang, 2020. "Energy Storage Economic Analysis of Multi-Application Scenarios in an Electricity Market: A Case Study of China," Sustainability, MDPI, vol. 12(20), pages 1-17, October.
    7. Hosseinnia, Hamed & Modarresi, Javad & Nazarpour, Daryoush, 2020. "Optimal eco-emission scheduling of distribution network operator and distributed generator owner under employing demand response program," Energy, Elsevier, vol. 191(C).
    8. Luerssen, Christoph & Gandhi, Oktoviano & Reindl, Thomas & Sekhar, Chandra & Cheong, David, 2020. "Life cycle cost analysis (LCCA) of PV-powered cooling systems with thermal energy and battery storage for off-grid applications," Applied Energy, Elsevier, vol. 273(C).
    9. Mahdavi, Sajad & Hemmati, Reza & Jirdehi, Mehdi Ahmadi, 2018. "Two-level planning for coordination of energy storage systems and wind-solar-diesel units in active distribution networks," Energy, Elsevier, vol. 151(C), pages 954-965.
    10. Yang, Yuqing & Bremner, Stephen & Menictas, Chris & Kay, Merlinde, 2018. "Battery energy storage system size determination in renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 109-125.
    11. Prajapati, Vijaykumar K. & Mahajan, Vasundhara, 2021. "Reliability assessment and congestion management of power system with energy storage system and uncertain renewable resources," Energy, Elsevier, vol. 215(PB).
    12. Argyrou, Maria C. & Christodoulides, Paul & Kalogirou, Soteris A., 2018. "Energy storage for electricity generation and related processes: Technologies appraisal and grid scale applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 804-821.
    13. Mehrjerdi, Hasan & Bornapour, Mosayeb & Hemmati, Reza & Ghiasi, Seyyed Mohammad Sadegh, 2019. "Unified energy management and load control in building equipped with wind-solar-battery incorporating electric and hydrogen vehicles under both connected to the grid and islanding modes," Energy, Elsevier, vol. 168(C), pages 919-930.
    14. de la Hoz, Jordi & Martín, Helena & Alonso, Alex & Carolina Luna, Adriana & Matas, José & Vasquez, Juan C. & Guerrero, Josep M., 2019. "Regulatory-framework-embedded energy management system for microgrids: The case study of the Spanish self-consumption scheme," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    15. Dong, Weiwei & Zhao, Guohua & Yüksel, Serhat & Dinçer, Hasan & Ubay, Gözde Gülseven, 2022. "A novel hybrid decision making approach for the strategic selection of wind energy projects," Renewable Energy, Elsevier, vol. 185(C), pages 321-337.
    16. Tong, Zheming & Cheng, Zhewu & Tong, Shuiguang, 2021. "A review on the development of compressed air energy storage in China: Technical and economic challenges to commercialization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    17. Hou, Qingchun & Zhang, Ning & Du, Ershun & Miao, Miao & Peng, Fei & Kang, Chongqing, 2019. "Probabilistic duck curve in high PV penetration power system: Concept, modeling, and empirical analysis in China," Applied Energy, Elsevier, vol. 242(C), pages 205-215.
    18. Chong, Lee Wai & Wong, Yee Wan & Rajkumar, Rajprasad Kumar & Rajkumar, Rajpartiban Kumar & Isa, Dino, 2016. "Hybrid energy storage systems and control strategies for stand-alone renewable energy power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 174-189.
    19. Barzegkar-Ntovom, Georgios A. & Chatzigeorgiou, Nikolas G. & Nousdilis, Angelos I. & Vomva, Styliani A. & Kryonidis, Georgios C. & Kontis, Eleftherios O. & Georghiou, George E. & Christoforidis, Georg, 2020. "Assessing the viability of battery energy storage systems coupled with photovoltaics under a pure self-consumption scheme," Renewable Energy, Elsevier, vol. 152(C), pages 1302-1309.
    20. Jidai Wang & Kunpeng Lu & Lan Ma & Jihong Wang & Mark Dooner & Shihong Miao & Jian Li & Dan Wang, 2017. "Overview of Compressed Air Energy Storage and Technology Development," Energies, MDPI, vol. 10(7), pages 1-22, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:152:y:2018:i:c:p:759-769. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.