IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i3p1287-d1046498.html
   My bibliography  Save this article

A Sensorless Intelligent System to Detect Dust on PV Panels for Optimized Cleaning Units

Author

Listed:
  • Faris E. Alfaris

    (Department of Electrical Engineering, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia)

Abstract

Deployment of photovoltaic (PV) systems has recently been encouraged for large-scale and small-scale businesses in order to meet the global green energy targets. However, one of the most significant hurdles that limits the spread of PV applications is the dust accumulated on the PV panels’ surfaces, especially in desert regions. Numerous studies sought the use of cameras, sensors, power datasets, and other detection elements to detect the dust on PV panels; however, these methods pose more maintenance, accuracy, and economic challenges. Therefore, this paper proposes an intelligent system to detect the dust level on the PV panels to optimally operate the attached dust cleaning units (DCUs). Unlike previous strategies, this study utilizes the expanded knowledge and collected data for solar irradiation and PV-generated power, along with the forecasted ambient temperature. An expert artificial intelligence (AI) computational system, adopted with the MATLAB platform, is utilized for a high level of data prediction and processing. The AI was used in this study in order to estimate the unprovided information, emulate the provided measurements, and accommodate more input/output data. The feasibility of the proposed system is investigated using actual field data during all possible weather conditions.

Suggested Citation

  • Faris E. Alfaris, 2023. "A Sensorless Intelligent System to Detect Dust on PV Panels for Optimized Cleaning Units," Energies, MDPI, vol. 16(3), pages 1-17, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1287-:d:1046498
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/3/1287/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/3/1287/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Elias Roumpakias & Tassos Stamatelos, 2020. "Surface Dust and Aerosol Effects on the Performance of Grid-Connected Photovoltaic Systems," Sustainability, MDPI, vol. 12(2), pages 1-18, January.
    2. Ismael, Sherif M. & Abdel Aleem, Shady H.E. & Abdelaziz, Almoataz Y. & Zobaa, Ahmed F., 2019. "State-of-the-art of hosting capacity in modern power systems with distributed generation," Renewable Energy, Elsevier, vol. 130(C), pages 1002-1020.
    3. S. Rehman & M. A. Mohandes & A. E. Hussein & L. M. Alhems & A. Al-Shaikhi, 2022. "Cleaning of Photovoltaic Panels Utilizing the Downward Thrust of a Drone," Energies, MDPI, vol. 15(21), pages 1-14, November.
    4. Abdulsalam S. Alghamdi & AbuBakr S. Bahaj & Luke S. Blunden & Yue Wu, 2019. "Dust Removal from Solar PV Modules by Automated Cleaning Systems," Energies, MDPI, vol. 12(15), pages 1-21, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Faris E. Alfaris & Essam A. Al-Ammar & Ghazi A. Ghazi & Ahmed A. AL-Katheri, 2024. "A Cost-Effective Fault Diagnosis and Localization Approach for Utility-Scale PV Systems Using Limited Number of Sensors," Sustainability, MDPI, vol. 16(15), pages 1-25, July.
    2. Fouzi Harrou & Ying Sun & Bilal Taghezouit & Abdelkader Dairi, 2023. "Artificial Intelligence Techniques for Solar Irradiance and PV Modeling and Forecasting," Energies, MDPI, vol. 16(18), pages 1-5, September.
    3. Boris I. Evstatiev & Dimitar T. Trifonov & Katerina G. Gabrovska-Evstatieva & Nikolay P. Valov & Nicola P. Mihailov, 2024. "PV Module Soiling Detection Using Visible Spectrum Imaging and Machine Learning," Energies, MDPI, vol. 17(20), pages 1-20, October.
    4. Izabela Rojek & Dariusz Mikołajewski & Adam Mroziński & Marek Macko, 2023. "Machine Learning- and Artificial Intelligence-Derived Prediction for Home Smart Energy Systems with PV Installation and Battery Energy Storage," Energies, MDPI, vol. 16(18), pages 1-26, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gowtham Vedulla & Anbazhagan Geetha & Ramalingam Senthil, 2022. "Review of Strategies to Mitigate Dust Deposition on Solar Photovoltaic Systems," Energies, MDPI, vol. 16(1), pages 1-28, December.
    2. Enrico Dalla Maria & Mattia Secchi & David Macii, 2021. "A Flexible Top-Down Data-Driven Stochastic Model for Synthetic Load Profiles Generation," Energies, MDPI, vol. 15(1), pages 1-20, December.
    3. Kenneth Ritter & Albert McBride & Terrence Chambers, 2021. "Soiling Comparison of Mirror Film and Glass Concentrating Solar Power Reflectors in Southwest Louisiana," Sustainability, MDPI, vol. 13(10), pages 1-16, May.
    4. Md Tariqul Islam & M. J. Hossain, 2023. "Artificial Intelligence for Hosting Capacity Analysis: A Systematic Literature Review," Energies, MDPI, vol. 16(4), pages 1-33, February.
    5. Wu, Yubo & Du, Jianqiang & Liu, Guangxin & Ma, Danzhu & Jia, Fengrui & Klemeš, Jiří Jaromír & Wang, Jin, 2022. "A review of self-cleaning technology to reduce dust and ice accumulation in photovoltaic power generation using superhydrophobic coating," Renewable Energy, Elsevier, vol. 185(C), pages 1034-1061.
    6. Muhyaddin Rawa & Abdullah Abusorrah & Yusuf Al-Turki & Martin Calasan & Mihailo Micev & Ziad M. Ali & Saad Mekhilef & Hussain Bassi & Hatem Sindi & Shady H. E. Abdel Aleem, 2022. "Estimation of Parameters of Different Equivalent Circuit Models of Solar Cells and Various Photovoltaic Modules Using Hybrid Variants of Honey Badger Algorithm and Artificial Gorilla Troops Optimizer," Mathematics, MDPI, vol. 10(7), pages 1-31, March.
    7. Ramitha Dissanayake & Akila Wijethunge & Janaka Wijayakulasooriya & Janaka Ekanayake, 2022. "Optimizing PV-Hosting Capacity with the Integrated Employment of Dynamic Line Rating and Voltage Regulation," Energies, MDPI, vol. 15(22), pages 1-19, November.
    8. Lewis Waswa & Munyaradzi Justice Chihota & Bernard Bekker, 2021. "A Probabilistic Conductor Size Selection Framework for Active Distribution Networks," Energies, MDPI, vol. 14(19), pages 1-19, October.
    9. Yao, Hongmin & Qin, Wenping & Jing, Xiang & Zhu, Zhilong & Wang, Ke & Han, Xiaoqing & Wang, Peng, 2022. "Possibilistic evaluation of photovoltaic hosting capacity on distribution networks under uncertain environment," Applied Energy, Elsevier, vol. 324(C).
    10. C. Birk Jones & Matthew Lave & Matthew J. Reno & Rachid Darbali-Zamora & Adam Summers & Shamina Hossain-McKenzie, 2020. "Volt-Var Curve Reactive Power Control Requirements and Risks for Feeders with Distributed Roof-Top Photovoltaic Systems," Energies, MDPI, vol. 13(17), pages 1-17, August.
    11. Grzegorz Hołdyński & Zbigniew Skibko & Wojciech Walendziuk, 2024. "Power and Energy Losses in Medium-Voltage Power Grids as a Function of Current Asymmetry—An Example from Poland," Energies, MDPI, vol. 17(15), pages 1-18, July.
    12. Ahmed I. Omar & Ziad M. Ali & Mostafa Al-Gabalawy & Shady H. E. Abdel Aleem & Mujahed Al-Dhaifallah, 2020. "Multi-Objective Environmental Economic Dispatch of an Electricity System Considering Integrated Natural Gas Units and Variable Renewable Energy Sources," Mathematics, MDPI, vol. 8(7), pages 1-37, July.
    13. Costa, Vinicius Braga Ferreira da & Bonatto, Benedito Donizeti, 2023. "Cutting-edge public policy proposal to maximize the long-term benefits of distributed energy resources," Renewable Energy, Elsevier, vol. 203(C), pages 357-372.
    14. Ibrahim Mohamed Diaaeldin & Mahmoud A. Attia & Amr K. Khamees & Othman A. M. Omar & Ahmed O. Badr, 2023. "A Novel Multiobjective Formulation for Optimal Wind Speed Modeling via a Mixture Probability Density Function," Mathematics, MDPI, vol. 11(6), pages 1-19, March.
    15. Amor Hamied & Adel Mellit & Mohamed Benghanem & Sahbi Boubaker, 2023. "IoT-Based Low-Cost Photovoltaic Monitoring for a Greenhouse Farm in an Arid Region," Energies, MDPI, vol. 16(9), pages 1-21, April.
    16. Andrei M. Tudose & Dorian O. Sidea & Irina I. Picioroaga & Nicolae Anton & Constantin Bulac, 2023. "Increasing Distributed Generation Hosting Capacity Based on a Sequential Optimization Approach Using an Improved Salp Swarm Algorithm," Mathematics, MDPI, vol. 12(1), pages 1-21, December.
    17. Muhyaddin Rawa & Abdullah Abusorrah & Yusuf Al-Turki & Saad Mekhilef & Mostafa H. Mostafa & Ziad M. Ali & Shady H. E. Abdel Aleem, 2020. "Optimal Allocation and Economic Analysis of Battery Energy Storage Systems: Self-Consumption Rate and Hosting Capacity Enhancement for Microgrids with High Renewable Penetration," Sustainability, MDPI, vol. 12(23), pages 1-25, December.
    18. Dimitris Drikakis & Talib Dbouk, 2022. "The Role of Computational Science in Wind and Solar Energy: A Critical Review," Energies, MDPI, vol. 15(24), pages 1-20, December.
    19. Hartvigsson, Elias & Odenberger, Mikael & Chen, Peiyuan & Nyholm, Emil, 2021. "Estimating national and local low-voltage grid capacity for residential solar photovoltaic in Sweden, UK and Germany," Renewable Energy, Elsevier, vol. 171(C), pages 915-926.
    20. Gupta, Ruchi & Pena-Bello, Alejandro & Streicher, Kai Nino & Roduner, Cattia & Farhat, Yamshid & Thöni, David & Patel, Martin Kumar & Parra, David, 2021. "Spatial analysis of distribution grid capacity and costs to enable massive deployment of PV, electric mobility and electric heating," Applied Energy, Elsevier, vol. 287(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1287-:d:1046498. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.