IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i18p6613-d1239524.html
   My bibliography  Save this article

Machine Learning- and Artificial Intelligence-Derived Prediction for Home Smart Energy Systems with PV Installation and Battery Energy Storage

Author

Listed:
  • Izabela Rojek

    (Faculty of Computer Science, Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz, Poland)

  • Dariusz Mikołajewski

    (Faculty of Computer Science, Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz, Poland)

  • Adam Mroziński

    (Faculty of Mechanical Engineering, Bydgoszcz University of Science and Technology, Kaliskiego 7, 85-796 Bydgoszcz, Poland)

  • Marek Macko

    (Faculty of Mechatronics, Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz, Poland)

Abstract

Overview: Photovoltaic (PV) systems are widely used in residential applications in Poland and Europe due to increasing environmental concerns and fossil fuel energy prices. Energy management strategies for residential systems (1.2 million prosumer PV installations in Poland) play an important role in reducing energy bills and maximizing profits. Problem: This article aims to check how predictable the operation of a household PV system is in the short term—such predictions are usually made 24 h in advance. Methods: We made a comparative study of different energy management strategies based on a real household profile (selected energy storage installation) based on both traditional methods and various artificial intelligence (AI) tools, which is a new approach, so far rarely used and underutilized, and may inspire further research, including those based on the paradigm of Industry 4.0 and, increasingly, Industry 5.0. Results: This paper discusses the results for different operational scenarios, considering two prosumer billing systems in Poland (net metering and net billing). Conclusions: Insights into future research directions and their limitations due to legal status, etc., are presented. The novelty and contribution lies in the demonstration that, in the case of domestic PV grids, even simple AI solutions can prove effective in inference and forecasting to support energy flow management and make it more predictable and efficient.

Suggested Citation

  • Izabela Rojek & Dariusz Mikołajewski & Adam Mroziński & Marek Macko, 2023. "Machine Learning- and Artificial Intelligence-Derived Prediction for Home Smart Energy Systems with PV Installation and Battery Energy Storage," Energies, MDPI, vol. 16(18), pages 1-26, September.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:18:p:6613-:d:1239524
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/18/6613/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/18/6613/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Laurentiu Fara & Dan Craciunescu & Silvian Fara, 2021. "Numerical Modelling and Digitalization Analysis for a Photovoltaic Pumping System Placed in the South of Romania," Energies, MDPI, vol. 14(10), pages 1-21, May.
    2. Ming Zhang & Dongfang Yang & Jiaxuan Du & Hanlei Sun & Liwei Li & Licheng Wang & Kai Wang, 2023. "A Review of SOH Prediction of Li-Ion Batteries Based on Data-Driven Algorithms," Energies, MDPI, vol. 16(7), pages 1-28, March.
    3. Jumaboev Sherozbek & Jaewoo Park & Mohammad Shaheer Akhtar & O-Bong Yang, 2023. "Transformers-Based Encoder Model for Forecasting Hourly Power Output of Transparent Photovoltaic Module Systems," Energies, MDPI, vol. 16(3), pages 1-11, January.
    4. Liu, Zhi-Feng & Li, Ling-Ling & Liu, Yu-Wei & Liu, Jia-Qi & Li, Heng-Yi & Shen, Qiang, 2021. "Dynamic economic emission dispatch considering renewable energy generation: A novel multi-objective optimization approach," Energy, Elsevier, vol. 235(C).
    5. Ariana Moncada & Walter Richardson & Rolando Vega-Avila, 2018. "Deep Learning to Forecast Solar Irradiance Using a Six-Month UTSA SkyImager Dataset," Energies, MDPI, vol. 11(8), pages 1-16, July.
    6. Chih-Chiang Hua & Yu-Jun Zhan, 2021. "A Hybrid Maximum Power Point Tracking Method without Oscillations in Steady-State for Photovoltaic Energy Systems," Energies, MDPI, vol. 14(18), pages 1-16, September.
    7. Musawenkosi Lethumcebo Thanduxolo Zulu & Rudiren Pillay Carpanen & Remy Tiako, 2023. "A Comprehensive Review: Study of Artificial Intelligence Optimization Technique Applications in a Hybrid Microgrid at Times of Fault Outbreaks," Energies, MDPI, vol. 16(4), pages 1-32, February.
    8. Mohamed Mohana & Abdelaziz Salah Saidi & Salem Alelyani & Mohammed J. Alshayeb & Suhail Basha & Ali Eisa Anqi, 2021. "Small-Scale Solar Photovoltaic Power Prediction for Residential Load in Saudi Arabia Using Machine Learning," Energies, MDPI, vol. 14(20), pages 1-18, October.
    9. Fatin Ishraque, Md. & Shezan, Sk. A. & Ali, M.M. & Rashid, M.M., 2021. "Optimization of load dispatch strategies for an islanded microgrid connected with renewable energy sources," Applied Energy, Elsevier, vol. 292(C).
    10. Su-Chang Lim & Jun-Ho Huh & Seok-Hoon Hong & Chul-Young Park & Jong-Chan Kim, 2022. "Solar Power Forecasting Using CNN-LSTM Hybrid Model," Energies, MDPI, vol. 15(21), pages 1-17, November.
    11. Faris E. Alfaris, 2023. "A Sensorless Intelligent System to Detect Dust on PV Panels for Optimized Cleaning Units," Energies, MDPI, vol. 16(3), pages 1-17, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Izabela Rojek & Adam Mroziński & Piotr Kotlarz & Marek Macko & Dariusz Mikołajewski, 2023. "AI-Based Computational Model in Sustainable Transformation of Energy Markets," Energies, MDPI, vol. 16(24), pages 1-26, December.
    2. Kinga Stecuła & Radosław Wolniak & Wieslaw Wes Grebski, 2023. "AI-Driven Urban Energy Solutions—From Individuals to Society: A Review," Energies, MDPI, vol. 16(24), pages 1-34, December.
    3. Wang, Guimei & Mukhtar, Azfarizal & Moayedi, Hossein & Khalilpoor, Nima & Tt, Quynh, 2024. "Application and evaluation of the evolutionary algorithms combined with conventional neural network to determine the building energy consumption of the residential sector," Energy, Elsevier, vol. 298(C).
    4. Mokhtar Jlidi & Oscar Barambones & Faiçal Hamidi & Mohamed Aoun, 2024. "ANN for Temperature and Irradiation Prediction and Maximum Power Point Tracking Using MRP-SMC," Energies, MDPI, vol. 17(12), pages 1-21, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lioua Kolsi & Sameer Al-Dahidi & Souad Kamel & Walid Aich & Sahbi Boubaker & Nidhal Ben Khedher, 2022. "Prediction of Solar Energy Yield Based on Artificial Intelligence Techniques for the Ha’il Region, Saudi Arabia," Sustainability, MDPI, vol. 15(1), pages 1-15, December.
    2. Soheil Mohseni & Alan C. Brent, 2022. "A Metaheuristic-Based Micro-Grid Sizing Model with Integrated Arbitrage-Aware Multi-Day Battery Dispatching," Sustainability, MDPI, vol. 14(19), pages 1-24, October.
    3. Obeidi, Nabil & Kermadi, Mostefa & Belmadani, Bachir & Allag, Abdelkrim & Achour, Lazhar & Mesbahi, Nadhir & Mekhilef, Saad, 2023. "A modified current sensorless approach for maximum power point tracking of partially shaded photovoltaic systems," Energy, Elsevier, vol. 263(PA).
    4. Paulo M. De Oliveira-De Jesus & Jose M. Yusta, 2024. "Optimal Power Dispatch for Maximum Energy Community Welfare by Considering Closed Distribution Systems and Renewable Sources," Energies, MDPI, vol. 17(18), pages 1-21, September.
    5. Sheng, Wanxing & Li, Rui & Yan, Tao & Tseng, Ming-Lang & Lou, Jiale & Li, Lingling, 2023. "A hybrid dynamic economics emissions dispatch model: Distributed renewable power systems based on improved COOT optimization algorithm," Renewable Energy, Elsevier, vol. 204(C), pages 493-506.
    6. Hua Li & Zhen Wang & Binbin Shan & Lingling Li, 2022. "Research on Multi-Step Prediction of Short-Term Wind Power Based on Combination Model and Error Correction," Energies, MDPI, vol. 15(22), pages 1-21, November.
    7. Mousavi, Seyed Ali & Toopshekan, Ashkan & Mehrpooya, Mehdi & Delpisheh, Mostafa, 2023. "Comprehensive exergetic performance assessment and techno-financial optimization of off-grid hybrid renewable configurations with various dispatch strategies and solar tracking systems," Renewable Energy, Elsevier, vol. 210(C), pages 40-63.
    8. Kumar Jadoun, Vinay & Rahul Prashanth, G & Suhas Joshi, Siddharth & Narayanan, K. & Malik, Hasmat & García Márquez, Fausto Pedro, 2022. "Optimal fuzzy based economic emission dispatch of combined heat and power units using dynamically controlled Whale Optimization Algorithm," Applied Energy, Elsevier, vol. 315(C).
    9. Ajith, Meenu & Martínez-Ramón, Manel, 2023. "Deep learning algorithms for very short term solar irradiance forecasting: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    10. Chao Zhou & Bing Gao & Haiyue Yang & Xudong Zhang & Jiaqi Liu & Lingling Li, 2022. "Junction Temperature Prediction of Insulated-Gate Bipolar Transistors in Wind Power Systems Based on an Improved Honey Badger Algorithm," Energies, MDPI, vol. 15(19), pages 1-19, October.
    11. Zhang, Hao & Gao, Jingyi & Kang, Le & Zhang, Yi & Wang, Licheng & Wang, Kai, 2023. "State of health estimation of lithium-ion batteries based on modified flower pollination algorithm-temporal convolutional network," Energy, Elsevier, vol. 283(C).
    12. Giovanni Brumana & Elisa Ghirardi & Giuseppe Franchini, 2024. "Comparison of Different Power Generation Mixes for High Penetration of Renewables," Sustainability, MDPI, vol. 16(19), pages 1-16, September.
    13. Fouzi Harrou & Ying Sun & Bilal Taghezouit & Abdelkader Dairi, 2023. "Artificial Intelligence Techniques for Solar Irradiance and PV Modeling and Forecasting," Energies, MDPI, vol. 16(18), pages 1-5, September.
    14. Zang, Haixiang & Liu, Ling & Sun, Li & Cheng, Lilin & Wei, Zhinong & Sun, Guoqiang, 2020. "Short-term global horizontal irradiance forecasting based on a hybrid CNN-LSTM model with spatiotemporal correlations," Renewable Energy, Elsevier, vol. 160(C), pages 26-41.
    15. Dan Craciunescu & Laurentiu Fara, 2023. "Investigation of the Partial Shading Effect of Photovoltaic Panels and Optimization of Their Performance Based on High-Efficiency FLC Algorithm," Energies, MDPI, vol. 16(3), pages 1-28, January.
    16. Liu, Zhi-Feng & Zhao, Shi-Xiang & Zhang, Xi-Jia & Tang, Yu & You, Guo-Dong & Li, Ji-Xiang & Zhao, Shuang-Le & Hou, Xiao-Xin, 2023. "Renewable energy utilizing and fluctuation stabilizing using optimal dynamic grid connection factor strategy and artificial intelligence-based solution method," Renewable Energy, Elsevier, vol. 219(P1).
    17. Myada Shadoul & Rashid Al Abri & Hassan Yousef & Abdullah Al Shereiqi, 2024. "Designing a Dispatch Engine for Hybrid Renewable Power Stations Using a Mixed-Integer Linear Programming Technique," Energies, MDPI, vol. 17(13), pages 1-27, July.
    18. Wu, Thomas & Hu, Ruifeng & Zhu, Hongyu & Jiang, Meihui & Lv, Kunye & Dong, Yunxuan & Zhang, Dongdong, 2024. "Combined IXGBoost-KELM short-term photovoltaic power prediction model based on multidimensional similar day clustering and dual decomposition," Energy, Elsevier, vol. 288(C).
    19. Pavić, Ivan & Čović, Nikolina & Pandžić, Hrvoje, 2022. "PV–battery-hydrogen plant: Cutting green hydrogen costs through multi-market positioning," Applied Energy, Elsevier, vol. 328(C).
    20. Pampa Sinha & Kaushik Paul & Sanchari Deb & Sulabh Sachan, 2023. "Comprehensive Review Based on the Impact of Integrating Electric Vehicle and Renewable Energy Sources to the Grid," Energies, MDPI, vol. 16(6), pages 1-39, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:18:p:6613-:d:1239524. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.