IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i21p9331-d1507764.html
   My bibliography  Save this article

Photovoltaic Modules’ Cleaning Method Selection for the MENA Region

Author

Listed:
  • Haneen Abuzaid

    (Department of Industrial Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates)

  • Mahmoud Awad

    (Department of Industrial Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates)

  • Abdulrahim Shamayleh

    (Department of Industrial Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates)

Abstract

Photovoltaic (PV) systems are important components of the global shift towards sustainable energy resources, utilizing solar energy to generate electricity. However, the efficiency and performance of PV systems heavily rely on cleanliness, as dust accumulation can significantly obstruct their effectiveness over time. This study undertook a comprehensive literature review and carried out multiple interviews with experts in the PV systems field to propose a map for selecting the optimal PV cleaning method for PV systems within MENA region. These factors, covering meteorological conditions, the local environment, PV system design, module characteristics, dust deposition attributes, exposure time to dust, and socio-economic and environmental considerations, were employed as criteria in a Multi-Criteria Decision-Making (MCDM) model, specifically, an Analytic Network Process (ANP). The results indicate that partially automated cleaning is the most suitable method for existing utility-scale PV projects in the MENA region. The findings provide robust guidelines for PV system stakeholders, aiding informed decision-making and enhancing the sustainability of PV cleaning processes.

Suggested Citation

  • Haneen Abuzaid & Mahmoud Awad & Abdulrahim Shamayleh, 2024. "Photovoltaic Modules’ Cleaning Method Selection for the MENA Region," Sustainability, MDPI, vol. 16(21), pages 1-23, October.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:21:p:9331-:d:1507764
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/21/9331/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/21/9331/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Poudineh, Rahmatallah & Sen, Anupama & Fattouh, Bassam, 2020. "An integrated approach to electricity sector reforms in the resource rich economies of the MENA," Energy Policy, Elsevier, vol. 138(C).
    2. Deb, Dipankar & Brahmbhatt, Nisarg L., 2018. "Review of yield increase of solar panels through soiling prevention, and a proposed water-free automated cleaning solution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3306-3313.
    3. Thomas L. Saaty & Luis G. Vargas, 2006. "Decision Making with the Analytic Network Process," International Series in Operations Research and Management Science, Springer, number 978-0-387-33987-0, December.
    4. Rafi Zahedi & Parisa Ranjbaran & Gevork B. Gharehpetian & Fazel Mohammadi & Roya Ahmadiahangar, 2021. "Cleaning of Floating Photovoltaic Systems: A Critical Review on Approaches from Technical and Economic Perspectives," Energies, MDPI, vol. 14(7), pages 1-25, April.
    5. Thomas L. Saaty & Luis G. Vargas, 2013. "The Analytic Network Process," International Series in Operations Research & Management Science, in: Decision Making with the Analytic Network Process, edition 2, chapter 0, pages 1-40, Springer.
    6. Dhaouadi, Rached & Al-Othman, Amani & Aidan, Ahmed A. & Tawalbeh, Muhammad & Zannerni, Rawan, 2021. "A characterization study for the properties of dust particles collected on photovoltaic (PV) panels in Sharjah, United Arab Emirates," Renewable Energy, Elsevier, vol. 171(C), pages 133-140.
    7. Adnan Aslam & Naseer Ahmed & Safian Ahmed Qureshi & Mohsen Assadi & Naveed Ahmed, 2022. "Advances in Solar PV Systems; A Comprehensive Review of PV Performance, Influencing Factors, and Mitigation Techniques," Energies, MDPI, vol. 15(20), pages 1-52, October.
    8. Thomas L. Saaty & Luis G. Vargas, 2013. "Decision Making with the Analytic Network Process," International Series in Operations Research and Management Science, Springer, edition 2, number 978-1-4614-7279-7, December.
    9. Zhao, Weiping & Lv, Yukun & Zhou, Qingwen & Yan, Weiping, 2021. "Investigation on particle deposition criterion and dust accumulation impact on solar PV module performance," Energy, Elsevier, vol. 233(C).
    10. Griffiths, Steven, 2017. "A review and assessment of energy policy in the Middle East and North Africa region," Energy Policy, Elsevier, vol. 102(C), pages 249-269.
    11. Thomas L. Saaty & Luis G. Vargas, 2013. "An Analytic Network Process Model for Financial-Crisis Forecasting," International Series in Operations Research & Management Science, in: Decision Making with the Analytic Network Process, edition 2, chapter 0, pages 75-92, Springer.
    12. Boudekhdekh, Karim, 2022. "A comparative analysis of energy subsidy in the MENA region," MPRA Paper 115275, University Library of Munich, Germany.
    13. Abdulsalam S. Alghamdi & AbuBakr S. Bahaj & Luke S. Blunden & Yue Wu, 2019. "Dust Removal from Solar PV Modules by Automated Cleaning Systems," Energies, MDPI, vol. 12(15), pages 1-21, July.
    14. Emran Aljdaeh & Innocent Kamwa & Waleed Hammad & Mohammed I. Abuashour & Tha’er Sweidan & Haris M. Khalid & S. M. Muyeen, 2021. "Performance Enhancement of Self-Cleaning Hydrophobic Nanocoated Photovoltaic Panels in a Dusty Environment," Energies, MDPI, vol. 14(20), pages 1-18, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Chen-Fa & Wang, Hsiao-Hsuan & Chen, Szu-Hung & Trac, Luu Van Thong, 2024. "Assessing the efficiency of bird habitat conservation strategies in farmland ecosystems," Ecological Modelling, Elsevier, vol. 492(C).
    2. Gowtham Vedulla & Anbazhagan Geetha & Ramalingam Senthil, 2022. "Review of Strategies to Mitigate Dust Deposition on Solar Photovoltaic Systems," Energies, MDPI, vol. 16(1), pages 1-28, December.
    3. Alok K. Pandey & R. Krishankumar & Dragan Pamucar & Fausto Cavallaro & Abbas Mardani & Samarjit Kar & K. S. Ravichandran, 2021. "A Bibliometric Review on Decision Approaches for Clean Energy Systems under Uncertainty," Energies, MDPI, vol. 14(20), pages 1-27, October.
    4. Puppala, Harish & Ahuja, Jaya & Tamvada, Jagannadha Pawan & Peddinti, Pranav R T, 2023. "New technology adoption in rural areas of emerging economies: The case of rainwater harvesting systems in India," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
    5. Wolfgang Ossadnik & Stefanie Schinke & Ralf H. Kaspar, 2016. "Group Aggregation Techniques for Analytic Hierarchy Process and Analytic Network Process: A Comparative Analysis," Group Decision and Negotiation, Springer, vol. 25(2), pages 421-457, March.
    6. Chowdhury, Naimur Rahman & Paul, Sanjoy Kumar & Sarker, Tapan & Shi, Yangyan, 2023. "Implementing smart waste management system for a sustainable circular economy in the textile industry," International Journal of Production Economics, Elsevier, vol. 262(C).
    7. Teniwut, Wellem Anselmus & Hamid, Syahibul Kahfi & Makailipessy, Marvin Mario, 2022. "Developing a masterplan for a sustainable marine sector in a small islands region: Integrated MCE spatial analysis for decision making," Land Use Policy, Elsevier, vol. 122(C).
    8. Rachele Corticelli & Margherita Pazzini & Cecilia Mazzoli & Claudio Lantieri & Annarita Ferrante & Valeria Vignali, 2022. "Urban Regeneration and Soft Mobility: The Case Study of the Rimini Canal Port in Italy," Sustainability, MDPI, vol. 14(21), pages 1-27, November.
    9. David Staš & Radim Lenort & Pavel Wicher & David Holman, 2015. "Green Transport Balanced Scorecard Model with Analytic Network Process Support," Sustainability, MDPI, vol. 7(11), pages 1-19, November.
    10. Clara Moreira Senne & Josiane Palma Lima & Fábio Favaretto, 2021. "An Index for the Sustainability of Integrated Urban Transport and Logistics: The Case Study of São Paulo," Sustainability, MDPI, vol. 13(21), pages 1-18, November.
    11. Mohammed Ifkirne & Houssam El Bouhi & Siham Acharki & Quoc Bao Pham & Abdelouahed Farah & Nguyen Thi Thuy Linh, 2022. "Multi-Criteria GIS-Based Analysis for Mapping Suitable Sites for Onshore Wind Farms in Southeast France," Land, MDPI, vol. 11(10), pages 1-26, October.
    12. Enrique Mu & Howard Stern, 2018. "A Contingent/Assimilation Framework for Public Interorganizational Systems Decisions: Should the City of Pittsburgh and Allegheny County Consolidate Information Technology Services?," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 17(06), pages 1611-1658, November.
    13. Wu, Yubo & Du, Jianqiang & Liu, Guangxin & Ma, Danzhu & Jia, Fengrui & Klemeš, Jiří Jaromír & Wang, Jin, 2022. "A review of self-cleaning technology to reduce dust and ice accumulation in photovoltaic power generation using superhydrophobic coating," Renewable Energy, Elsevier, vol. 185(C), pages 1034-1061.
    14. Fan, Siyuan & Wang, Xiao & Wang, Zun & Sun, Bo & Zhang, Zhenhai & Cao, Shengxian & Zhao, Bo & Wang, Yu, 2022. "A novel image enhancement algorithm to determine the dust level on photovoltaic (PV) panels," Renewable Energy, Elsevier, vol. 201(P1), pages 172-180.
    15. Toly Chen, 2021. "A diversified AHP-tree approach for multiple-criteria supplier selection," Computational Management Science, Springer, vol. 18(4), pages 431-453, October.
    16. Hocine, Amine & Kouaissah, Noureddine, 2020. "XOR analytic hierarchy process and its application in the renewable energy sector," Omega, Elsevier, vol. 97(C).
    17. Zhao, Weiping & Lv, Yukun & Dong, Zhiguang & Zhao, Fang & Lv, Fengyong & Yan, Weiping, 2024. "Effect of self-cleaning superhydrophobic coating on dust deposition and performance of PV modules," Renewable Energy, Elsevier, vol. 227(C).
    18. Abrahamsen, Eirik Bjorheim & Milazzo, Maria Francesca & Selvik, Jon T. & Asche, Frank & Abrahamsen, HÃ¥kon Bjorheim, 2020. "Prioritising investments in safety measures in the chemical industry by using the Analytic Hierarchy Process," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    19. Paweł Ziemba, 2019. "Inter-Criteria Dependencies-Based Decision Support in the Sustainable wind Energy Management," Energies, MDPI, vol. 12(4), pages 1-29, February.
    20. Ferry Syarifuddin, 2022. "Towards Green Economy Transformation Through Islamic Green Financing: Managing Risk And Fostering Sustainable Growth For The Real And Financial Sectors," Working Papers WP/05/2022, Bank Indonesia.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:21:p:9331-:d:1507764. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.