IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i20p5238-d1503570.html
   My bibliography  Save this article

PV Module Soiling Detection Using Visible Spectrum Imaging and Machine Learning

Author

Listed:
  • Boris I. Evstatiev

    (Faculty of Electrical Engineering, Electronics, and Automation, University of Ruse “Angel Kanchev”, 7004 Ruse, Bulgaria)

  • Dimitar T. Trifonov

    (Faculty of Electrical Engineering, Electronics, and Automation, University of Ruse “Angel Kanchev”, 7004 Ruse, Bulgaria)

  • Katerina G. Gabrovska-Evstatieva

    (Faculty of Natural Science and Education, University of Ruse “Angel Kanchev”, 7004 Ruse, Bulgaria)

  • Nikolay P. Valov

    (Faculty of Electrical Engineering, Electronics, and Automation, University of Ruse “Angel Kanchev”, 7004 Ruse, Bulgaria)

  • Nicola P. Mihailov

    (Faculty of Electrical Engineering, Electronics, and Automation, University of Ruse “Angel Kanchev”, 7004 Ruse, Bulgaria)

Abstract

During the last decades photovoltaic solar energy has continuously increased its share in the electricity mix and has already surpassed 5% globally. Even though photovoltaic (PV) installations are considered to require very little maintenance, their efficient exploitation relies on accounting for certain environmental factors that affect energy generation. One of these factors is the soiling of the PV surface, which could be observed in different forms, such as dust and bird droppings. In this study, visible spectrum data and machine learning algorithms were used for the identification of soiling. A methodology for preprocessing the images is proposed, which puts focus on any soiling of the PV surface. The performance of six classification machine learning algorithms is evaluated and compared—convolutional neural network (CNN), support vector machine (SVM), random forest (RF), k-nearest neighbor (kNN), naïve-Bayes, and decision tree. During the training and validation phase, RF proved to be the best-performing model with an F1 score of 0.935, closely followed by SVM, CNN, and kNN. However, during the testing phase, the trained CNN achieved the highest performance, reaching F1 = 0.913. SVM closely followed it with a score of 0.895, while the other two models returned worse results. Some results from the application of the optimal model after specific weather events are also presented in this study. They confirmed once again that the trained convolutional neural network can be successfully used to evaluate the soiling state of photovoltaic surfaces.

Suggested Citation

  • Boris I. Evstatiev & Dimitar T. Trifonov & Katerina G. Gabrovska-Evstatieva & Nikolay P. Valov & Nicola P. Mihailov, 2024. "PV Module Soiling Detection Using Visible Spectrum Imaging and Machine Learning," Energies, MDPI, vol. 17(20), pages 1-20, October.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:20:p:5238-:d:1503570
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/20/5238/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/20/5238/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Heinrich, Matthias & Meunier, Simon & Samé, Allou & Quéval, Loïc & Darga, Arouna & Oukhellou, Latifa & Multon, Bernard, 2020. "Detection of cleaning interventions on photovoltaic modules with machine learning," Applied Energy, Elsevier, vol. 263(C).
    2. Hussain Bassi & Zainal Salam & Mohd Zulkifli Ramli & Hatem Sindi & Muhyaddin Rawa, 2019. "Hardware Approach to Mitigate the Effects of Module Mismatch in a Grid-connected Photovoltaic System: A Review," Energies, MDPI, vol. 12(22), pages 1-25, November.
    3. Cruz-Rojas, Tonatiuh & Franco, Jesus Alejandro & Hernandez-Escobedo, Quetzalcoatl & Ruiz-Robles, Dante & Juarez-Lopez, Jose Manuel, 2023. "A novel comparison of image semantic segmentation techniques for detecting dust in photovoltaic panels using machine learning and deep learning," Renewable Energy, Elsevier, vol. 217(C).
    4. Song, Zhe & Liu, Jia & Yang, Hongxing, 2021. "Air pollution and soiling implications for solar photovoltaic power generation: A comprehensive review," Applied Energy, Elsevier, vol. 298(C).
    5. Fabio Giussani & Eric Wilczynski & Claudio Zandonella Callegher & Giovanni Dalle Nogare & Cristian Pozza & Antonio Novelli & Simon Pezzutto, 2024. "Use of Machine Learning Techniques on Aerial Imagery for the Extraction of Photovoltaic Data within the Urban Morphology," Sustainability, MDPI, vol. 16(5), pages 1-16, February.
    6. Mahmudul Islam & Masud Rana Rashel & Md Tofael Ahmed & A. K. M. Kamrul Islam & Mouhaydine Tlemçani, 2023. "Artificial Intelligence in Photovoltaic Fault Identification and Diagnosis: A Systematic Review," Energies, MDPI, vol. 16(21), pages 1-18, November.
    7. Marta Redondo & Carlos A. Platero & Antonio Moset & Fernando Rodríguez & Vicente Donate, 2023. "Soiling Modelling in Large Grid-Connected PV Plants for Cleaning Optimization," Energies, MDPI, vol. 16(2), pages 1-13, January.
    8. Mohamed Benghanem & Adel Mellit & Chourouk Moussaoui, 2023. "Embedded Hybrid Model (CNN–ML) for Fault Diagnosis of Photovoltaic Modules Using Thermographic Images," Sustainability, MDPI, vol. 15(10), pages 1-20, May.
    9. Celikel, Resat & Yilmaz, Musa & Gundogdu, Ahmet, 2022. "A voltage scanning-based MPPT method for PV power systems under complex partial shading conditions," Renewable Energy, Elsevier, vol. 184(C), pages 361-373.
    10. Rafi Zahedi & Parisa Ranjbaran & Gevork B. Gharehpetian & Fazel Mohammadi & Roya Ahmadiahangar, 2021. "Cleaning of Floating Photovoltaic Systems: A Critical Review on Approaches from Technical and Economic Perspectives," Energies, MDPI, vol. 14(7), pages 1-25, April.
    11. Faris E. Alfaris, 2023. "A Sensorless Intelligent System to Detect Dust on PV Panels for Optimized Cleaning Units," Energies, MDPI, vol. 16(3), pages 1-17, January.
    12. Fang, Mingyu & Qian, Weixing & Qian, Tao & Bao, Qiwei & Zhang, Haocheng & Qiu, Xiao, 2024. "DGImNet: A deep learning model for photovoltaic soiling loss estimation," Applied Energy, Elsevier, vol. 376(PB).
    13. Cavieres, Robinson & Barraza, Rodrigo & Estay, Danilo & Bilbao, José & Valdivia-Lefort, Patricio, 2022. "Automatic soiling and partial shading assessment on PV modules through RGB images analysis," Applied Energy, Elsevier, vol. 306(PA).
    14. Nouhaila Najmi & Ahmed Rachid, 2023. "A Review on Solar Panel Cleaning Systems and Techniques," Energies, MDPI, vol. 16(24), pages 1-18, December.
    15. Valerio Mariani & Giovanna Adinolfi & Amedeo Buonanno & Roberto Ciavarella & Antonio Ricca & Vincenzo Sorrentino & Giorgio Graditi & Maria Valenti, 2024. "A Survey on Anomalies and Faults That May Impact the Reliability of Renewable-Based Power Systems," Sustainability, MDPI, vol. 16(14), pages 1-29, July.
    16. Musa Yilmaz, 2024. "Comparative Analysis of Hybrid Maximum Power Point Tracking Algorithms Using Voltage Scanning and Perturb and Observe Methods for Photovoltaic Systems under Partial Shading Conditions," Sustainability, MDPI, vol. 16(10), pages 1-15, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Fuxiang & Yuan, Ziming & Wu, Wei, 2024. "Experimental investigation of soiling losses on photovoltaic in high-density urban environments," Applied Energy, Elsevier, vol. 369(C).
    2. Qu, Jiaqi & Sun, Qiang & Qian, Zheng & Wei, Lu & Zareipour, Hamidreza, 2024. "Fault diagnosis for PV arrays considering dust impact based on transformed graphical features of characteristic curves and convolutional neural network with CBAM modules," Applied Energy, Elsevier, vol. 355(C).
    3. Fuxun Chen & Lanxin Zhang & Siyu Kang & Lutong Chen & Honghong Dong & Dan Li & Xiaozhu Wu, 2023. "Soft-NMS-Enabled YOLOv5 with SIOU for Small Water Surface Floater Detection in UAV-Captured Images," Sustainability, MDPI, vol. 15(14), pages 1-18, July.
    4. Yin, Rumeng & He, Jiang, 2023. "Design of a photovoltaic electric bike battery-sharing system in public transit stations," Applied Energy, Elsevier, vol. 332(C).
    5. Rediske, Graciele & Michels, Leandro & Siluk, Julio Cezar Mairesse & Rigo, Paula Donaduzzi & Rosa, Carmen Brum & Lima, Andrei Cunha, 2024. "A proposed set of indicators for evaluating the performance of the operation and maintenance of photovoltaic plants," Applied Energy, Elsevier, vol. 354(PA).
    6. Cheng Yang & Fuhao Sun & Yujie Zou & Zhipeng Lv & Liang Xue & Chao Jiang & Shuangyu Liu & Bochao Zhao & Haoyang Cui, 2024. "A Survey of Photovoltaic Panel Overlay and Fault Detection Methods," Energies, MDPI, vol. 17(4), pages 1-37, February.
    7. Fan, Siyuan & Wang, Xiao & Wang, Zun & Sun, Bo & Zhang, Zhenhai & Cao, Shengxian & Zhao, Bo & Wang, Yu, 2022. "A novel image enhancement algorithm to determine the dust level on photovoltaic (PV) panels," Renewable Energy, Elsevier, vol. 201(P1), pages 172-180.
    8. Fouzi Harrou & Ying Sun & Bilal Taghezouit & Abdelkader Dairi, 2023. "Artificial Intelligence Techniques for Solar Irradiance and PV Modeling and Forecasting," Energies, MDPI, vol. 16(18), pages 1-5, September.
    9. Abdulla, Hind & Sleptchenko, Andrei & Nayfeh, Ammar, 2024. "Photovoltaic systems operation and maintenance: A review and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 195(C).
    10. Li, B. & Delpha, C. & Diallo, D. & Migan-Dubois, A., 2021. "Application of Artificial Neural Networks to photovoltaic fault detection and diagnosis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    11. Farizal Farizal & Muhammad Aqil Noviandri & Hanif Hamdani, 2024. "Sustainability Development through a Nearly Zero Energy Building Implementation Case: An Office Building in South Jakarta," Sustainability, MDPI, vol. 16(16), pages 1-21, August.
    12. Liu, Fa & Wang, Xunming & Sun, Fubao & Wang, Hong, 2022. "Correct and remap solar radiation and photovoltaic power in China based on machine learning models," Applied Energy, Elsevier, vol. 312(C).
    13. Teng, Qingfang & Liu, Xuheng & Mai, Hao & Xing, Ke & Li, Mingxin & Ma, Xiping & Wang, Yanbo, 2023. "Nonsingular fast terminal sliding mode control for two-stage converters of AC island photovoltaic microgrid," Applied Energy, Elsevier, vol. 352(C).
    14. Mohammadi, Fazel & Bok, Rasoul & Hajian, Masood & Rezaei-Zare, Afshin, 2022. "Controller-Hardware-in-the-Loop Testing of A Single-Phase Single-Stage Transformerless Grid-Connected Photovoltaic Inverter," MPRA Paper 115985, University Library of Munich, Germany.
    15. Haneen Abuzaid & Mahmoud Awad & Abdulrahim Shamayleh, 2024. "Photovoltaic Modules’ Cleaning Method Selection for the MENA Region," Sustainability, MDPI, vol. 16(21), pages 1-23, October.
    16. Khairy Sayed & Mohammed G. Gronfula & Hamdy A. Ziedan, 2020. "Novel Soft-Switching Integrated Boost DC-DC Converter for PV Power System," Energies, MDPI, vol. 13(3), pages 1-17, February.
    17. Benjamins, Steven & Williamson, Benjamin & Billing, Suzannah-Lynn & Yuan, Zhiming & Collu, Maurizio & Fox, Clive & Hobbs, Laura & Masden, Elizabeth A. & Cottier-Cook, Elizabeth J. & Wilson, Ben, 2024. "Potential environmental impacts of floating solar photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    18. Raillani, Benyounes & Salhi, Mourad & Chaatouf, Dounia & Bria, Abir & Amraqui, Samir & Mezrhab, Ahmed, 2023. "A new proposed method to mitigate the soiling rate of a photovoltaic array using first-row height," Applied Energy, Elsevier, vol. 331(C).
    19. Mussawir Ul Mehmood & Abasin Ulasyar & Waleed Ali & Kamran Zeb & Haris Sheh Zad & Waqar Uddin & Hee-Je Kim, 2023. "A New Cloud-Based IoT Solution for Soiling Ratio Measurement of PV Systems Using Artificial Neural Network," Energies, MDPI, vol. 16(2), pages 1-14, January.
    20. Song, Zhe & Cao, Sunliang & Yang, Hongxing, 2023. "Assessment of solar radiation resource and photovoltaic power potential across China based on optimized interpretable machine learning model and GIS-based approaches," Applied Energy, Elsevier, vol. 339(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:20:p:5238-:d:1503570. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.