IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i17p5461-d627522.html
   My bibliography  Save this article

Operation Problems of Solar Panel Caused by the Surface Contamination

Author

Listed:
  • Dávid Matusz-Kalász

    (Institute of Physics and Electrical Engineering, University of Miskolc, 3515 Miskolc-Egyetemváros, Hungary)

  • István Bodnár

    (Institute of Physics and Electrical Engineering, University of Miskolc, 3515 Miskolc-Egyetemváros, Hungary)

Abstract

Solar panels have been widely criticized for their weather dependence and slowly improving efficiency. Several external factors can further increase the efficiency of solar panels, e.g., shading effect and surface contamination. We investigated the warming effect and the negative impact of these factors on energy production during the research. The continuous operation at high temperatures can modify the crystal structure of solar cells in these hot spots. The electroluminescence (EL) images and thermal imaging measurements show crystal structure failure. In addition to structural damage and rapid aging of the solar cells, contaminants can cause power losses of up to 10%.

Suggested Citation

  • Dávid Matusz-Kalász & István Bodnár, 2021. "Operation Problems of Solar Panel Caused by the Surface Contamination," Energies, MDPI, vol. 14(17), pages 1-13, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5461-:d:627522
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/17/5461/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/17/5461/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xueqing Liu & Song Yue & Luyi Lu & Jianlan Li, 2019. "Study on Dust Deposition Mechanics on Solar Mirrors in a Solar Power Plant," Energies, MDPI, vol. 12(23), pages 1-18, November.
    2. Hamed H. Saber & Ali E. Hajiah & Saleh A. Alshehri & Hussain J. Hussain, 2021. "Investigating the Effect of Dust Accumulation on the Solar Reflectivity of Coating Materials for Cool Roof Applications," Energies, MDPI, vol. 14(2), pages 1-24, January.
    3. Gürtürk, Mert & Benli, Hüseyin & Ertürk, Neslihan Koçdemir, 2018. "Effects of different parameters on energy – Exergy and power conversion efficiency of PV modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 426-439.
    4. Akram, M. Waqar & Li, Guiqiang & Jin, Yi & Chen, Xiao & Zhu, Changan & Zhao, Xudong & Khaliq, Abdul & Faheem, M. & Ahmad, Ashfaq, 2019. "CNN based automatic detection of photovoltaic cell defects in electroluminescence images," Energy, Elsevier, vol. 189(C).
    5. Abdulsalam S. Alghamdi & AbuBakr S. Bahaj & Luke S. Blunden & Yue Wu, 2019. "Dust Removal from Solar PV Modules by Automated Cleaning Systems," Energies, MDPI, vol. 12(15), pages 1-21, July.
    6. Siddiqui, Rahnuma & Kumar, Rajesh & Jha, Gopal Kumar & Gowri, Ganesh & Morampudi, Manoj & Rajput, Pragati & Lata, Sneh & Agariya, Swati & Dubey, Bharat & Nanda, Gayatri & Raghava, Sykam Sahan, 2016. "Comparison of different technologies for solar PV (Photovoltaic) outdoor performance using indoor accelerated aging tests for long term reliability," Energy, Elsevier, vol. 107(C), pages 550-561.
    7. Ewa Klugmann-Radziemska, 2020. "Shading, Dusting and Incorrect Positioning of Photovoltaic Modules as Important Factors in Performance Reduction," Energies, MDPI, vol. 13(8), pages 1-12, April.
    8. Adinoyi, Muhammed J. & Said, Syed A.M., 2013. "Effect of dust accumulation on the power outputs of solar photovoltaic modules," Renewable Energy, Elsevier, vol. 60(C), pages 633-636.
    9. Idris Al Siyabi & Arwa Al Mayasi & Aiman Al Shukaili & Sourav Khanna, 2021. "Effect of Soiling on Solar Photovoltaic Performance under Desert Climatic Conditions," Energies, MDPI, vol. 14(3), pages 1-18, January.
    10. Douglas Olivares & Pablo Ferrada & Jonathan Bijman & Sebastián Rodríguez & Mauricio Trigo-González & Aitor Marzo & Jorge Rabanal-Arabach & Joaquín Alonso-Montesinos & Francisco Javier Batlles & Edward, 2020. "Determination of the Soiling Impact on Photovoltaic Modules at the Coastal Area of the Atacama Desert," Energies, MDPI, vol. 13(15), pages 1-17, July.
    11. Maghami, Mohammad Reza & Hizam, Hashim & Gomes, Chandima & Radzi, Mohd Amran & Rezadad, Mohammad Ismael & Hajighorbani, Shahrooz, 2016. "Power loss due to soiling on solar panel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1307-1316.
    12. Joaquín Alonso-Montesinos & Francisco Rodríguez Martínez & Jesús Polo & Nuria Martín-Chivelet & Francisco Javier Batlles, 2020. "Economic Effect of Dust Particles on Photovoltaic Plant Production," Energies, MDPI, vol. 13(23), pages 1-24, December.
    13. Zhang, Chunxiao & Shen, Chao & Yang, Qianru & Wei, Shen & Lv, Guoquan & Sun, Cheng, 2020. "An investigation on the attenuation effect of air pollution on regional solar radiation," Renewable Energy, Elsevier, vol. 161(C), pages 570-578.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karim Menoufi, 2017. "Dust Accumulation on the Surface of Photovoltaic Panels: Introducing the Photovoltaic Soiling Index (PVSI)," Sustainability, MDPI, vol. 9(6), pages 1-12, June.
    2. Gabriel López & Diego Ramírez & Joaquín Alonso-Montesinos & Juan Sarmiento & Jesús Polo & Nuria Martín-Chivelet & Aitor Marzo & Francisco Javier Batlles & Pablo Ferrada, 2021. "Design of a Low-Cost Multiplexer for the Study of the Impact of Soiling on PV Panel Performance," Energies, MDPI, vol. 14(14), pages 1-12, July.
    3. Gowtham Vedulla & Anbazhagan Geetha & Ramalingam Senthil, 2022. "Review of Strategies to Mitigate Dust Deposition on Solar Photovoltaic Systems," Energies, MDPI, vol. 16(1), pages 1-28, December.
    4. Alkharusi, Tarik & Huang, Gan & Markides, Christos N., 2024. "Characterisation of soiling on glass surfaces and their impact on optical and solar photovoltaic performance," Renewable Energy, Elsevier, vol. 220(C).
    5. Conceição, Ricardo & González-Aguilar, José & Merrouni, Ahmed Alami & Romero, Manuel, 2022. "Soiling effect in solar energy conversion systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    6. Kumar, Manish & Kumar, Arun, 2017. "Performance assessment and degradation analysis of solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 554-587.
    7. Ramli, Makbul A.M. & Prasetyono, Eka & Wicaksana, Ragil W. & Windarko, Novie A. & Sedraoui, Khaled & Al-Turki, Yusuf A., 2016. "On the investigation of photovoltaic output power reduction due to dust accumulation and weather conditions," Renewable Energy, Elsevier, vol. 99(C), pages 836-844.
    8. Chiteka, Kudzanayi & Arora, Rajesh & Sridhara, S.N. & Enweremadu, C.C., 2021. "Optimizing wind barrier and photovoltaic array configuration in soiling mitigation," Renewable Energy, Elsevier, vol. 163(C), pages 225-236.
    9. Cherupurakal, Nizamudeen & Mozumder, Mohammad Sayem & Mourad, Abdel- Hamid I. & Lalwani, Shubra, 2021. "Recent advances in superhydrophobic polymers for antireflective self-cleaning solar panels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    10. Umar, Shayan & Waqas, Adeel & Tanveer, Waqas & Shahzad, Nadia & Janjua, Abdul Kashif & Dehghan, Maziar & Qureshi, Muhammad Salik & Shakir, Sehar, 2023. "A building integrated solar PV surface-cleaning setup to optimize the electricity output of PV modules in a polluted atmosphere," Renewable Energy, Elsevier, vol. 216(C).
    11. Pía Vásquez & Ignacia Devoto & Pablo Ferrada & Abel Taquichiri & Carlos Portillo & Rodrigo Palma-Behnke, 2021. "Inspection Data Collection Tool for Field Testing of Photovoltaic Modules in the Atacama Desert," Energies, MDPI, vol. 14(9), pages 1-24, April.
    12. Ballestrín, Jesús & Polo, Jesús & Martín-Chivelet, Nuria & Barbero, Javier & Carra, Elena & Alonso-Montesinos, Joaquín & Marzo, Aitor, 2022. "Soiling forecasting of solar plants: A combined heuristic approach and autoregressive model," Energy, Elsevier, vol. 239(PE).
    13. Adak, Deepanjana & Bhattacharyya, Raghunath & Barshilia, Harish C., 2022. "A state-of-the-art review on the multifunctional self-cleaning nanostructured coatings for PV panels, CSP mirrors and related solar devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    14. Antonia Sônia A. C. Diniz & Tulio P. Duarte & Suellen A. C. Costa & Daniel Sena Braga & Vinicius Camatta Santana & Lawrence L. Kazmerski, 2022. "Soiling Spectral and Module Temperature Effects: Comparisons of Competing Operating Parameters for Four Commercial PV Module Technologies," Energies, MDPI, vol. 15(15), pages 1-18, July.
    15. Chanchangi, Yusuf N. & Ghosh, Aritra & Sundaram, Senthilarasu & Mallick, Tapas K., 2020. "Dust and PV Performance in Nigeria: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    16. Polo, Jesús & Martín-Chivelet, Nuria & Sanz-Saiz, Carlos & Alonso-Montesinos, Joaquín & López, Gabriel & Alonso-Abella, Miguel & Battles, Francisco J. & Marzo, Aitor & Hanrieder, Natalie, 2021. "Modeling soiling losses for rooftop PV systems in suburban areas with nearby forest in Madrid," Renewable Energy, Elsevier, vol. 178(C), pages 420-428.
    17. Alshawaf, Mohammad & Poudineh, Rahmatallah & Alhajeri, Nawaf S., 2020. "Solar PV in Kuwait: The effect of ambient temperature and sandstorms on output variability and uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    18. Dhaouadi, Rached & Al-Othman, Amani & Aidan, Ahmed A. & Tawalbeh, Muhammad & Zannerni, Rawan, 2021. "A characterization study for the properties of dust particles collected on photovoltaic (PV) panels in Sharjah, United Arab Emirates," Renewable Energy, Elsevier, vol. 171(C), pages 133-140.
    19. Song, Zhe & Liu, Jia & Yang, Hongxing, 2021. "Air pollution and soiling implications for solar photovoltaic power generation: A comprehensive review," Applied Energy, Elsevier, vol. 298(C).
    20. István Bodnár & Dávid Matusz-Kalász & Ruben Rafael Boros, 2023. "Exploration of Solar Panel Damage and Service Life Reduction Using Condition Assessment, Dust Accumulation, and Material Testing," Sustainability, MDPI, vol. 15(12), pages 1-15, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5461-:d:627522. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.