IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i2p263-d1563239.html
   My bibliography  Save this article

Adaptive Hosting Capacity Forecasting in Distribution Networks with Distributed Energy Resources

Author

Listed:
  • Md Tariqul Islam

    (School of Electrical and Data Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
    These authors contributed equally to this work.)

  • M. Jahangir Hossain

    (School of Electrical and Data Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
    These authors contributed equally to this work.)

  • Md. Ahasan Habib

    (School of Electrical and Data Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia)

  • Muhammad Ahsan Zamee

    (School of Electrical and Data Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia)

Abstract

The sustainable integration of distributed energy resources (DER) into distribution networks requires accurate forecasting of hosting capacity. The network and DER variables alone do not capture the full range of external influences on DER integration. Traditional models often overlook the dynamic impacts of these exogenous factors, leading to suboptimal predictions. This study introduces a Sensitivity-Enhanced Recurrent Neural Network (SERNN) model, featuring a sensitivity gate within the neural network’s memory cell architecture to enhance responsiveness to time-varying variables. The sensitivity gate dynamically adjusts the model’s response based on external conditions, allowing for improved capture of input variability and temporal characteristics of the distribution network and DER. Additionally, a feedback mechanism within the model provides inputs from previous cell states into the forget gate, allowing for refined control over input selection and enhancing forecasting precision. Through case studies, the model demonstrates superior accuracy in hosting capacity predictions compared to baseline models like LSTM, ConvLSTM, Bidirectional LSTM, Stacked LSTM, and GRU. Study shows that the SERNN achieves a mean absolute error (MAE) of 0.2030, a root mean square error (RMSE) of 0.3884 and an R-squared value of 0.9854, outperforming the best baseline model by 48 per cent in MAE and 71 per cent in RMSE. Additionally, Feature engineering enhances the model’s performance, improving the R-squared value from 0.9145 to 0.9854. The sensitivity gate also impacts the model’s performance, lowering MAE to 0.2030 compared to 0.2283 without the sensitivity gate, and increasing the R-squared value from 0.9152 to 0.9854. Incorporating exogenous factors such as the time of day as a sensitivity gate input, further improves responsiveness, making the model more adaptable to real-world conditions. This advanced SERNN model offers a reliable framework for distribution network operators, supporting intelligent planning and proactive DER management. Ultimately, it provides a significant step forward in hosting capacity analysis, enabling more efficient and sustainable DER integration within next-generation distribution networks.

Suggested Citation

  • Md Tariqul Islam & M. Jahangir Hossain & Md. Ahasan Habib & Muhammad Ahsan Zamee, 2025. "Adaptive Hosting Capacity Forecasting in Distribution Networks with Distributed Energy Resources," Energies, MDPI, vol. 18(2), pages 1-25, January.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:2:p:263-:d:1563239
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/2/263/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/2/263/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jude Suchithra & Amin Rajabi & Duane A. Robinson, 2024. "Enhancing PV Hosting Capacity of Electricity Distribution Networks Using Deep Reinforcement Learning-Based Coordinated Voltage Control," Energies, MDPI, vol. 17(20), pages 1-27, October.
    2. Esau Zulu & Ryoichi Hara & Hiroyuki Kita, 2023. "An Efficient Hybrid Particle Swarm and Gradient Descent Method for the Estimation of the Hosting Capacity of Photovoltaics by Distribution Networks," Energies, MDPI, vol. 16(13), pages 1-17, July.
    3. Md Tariqul Islam & M. J. Hossain, 2023. "Artificial Intelligence for Hosting Capacity Analysis: A Systematic Literature Review," Energies, MDPI, vol. 16(4), pages 1-33, February.
    4. Ismael, Sherif M. & Abdel Aleem, Shady H.E. & Abdelaziz, Almoataz Y. & Zobaa, Ahmed F., 2019. "State-of-the-art of hosting capacity in modern power systems with distributed generation," Renewable Energy, Elsevier, vol. 130(C), pages 1002-1020.
    5. Md. Ahasan Habib & M. J. Hossain, 2024. "Revolutionizing Wind Power Prediction—The Future of Energy Forecasting with Advanced Deep Learning and Strategic Feature Engineering," Energies, MDPI, vol. 17(5), pages 1-23, March.
    6. Phi-Hai Trinh & Il-Yop Chung, 2024. "Integrated Active and Reactive Power Control Methods for Distributed Energy Resources in Distribution Systems for Enhancing Hosting Capacity," Energies, MDPI, vol. 17(7), pages 1-21, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrei M. Tudose & Dorian O. Sidea & Irina I. Picioroaga & Nicolae Anton & Constantin Bulac, 2023. "Increasing Distributed Generation Hosting Capacity Based on a Sequential Optimization Approach Using an Improved Salp Swarm Algorithm," Mathematics, MDPI, vol. 12(1), pages 1-21, December.
    2. Lewis Waswa & Munyaradzi Justice Chihota & Bernard Bekker, 2021. "A Probabilistic Conductor Size Selection Framework for Active Distribution Networks," Energies, MDPI, vol. 14(19), pages 1-19, October.
    3. Hua Zhan & Changxu Jiang & Zhen Lin, 2024. "A Novel Graph Reinforcement Learning-Based Approach for Dynamic Reconfiguration of Active Distribution Networks with Integrated Renewable Energy," Energies, MDPI, vol. 17(24), pages 1-19, December.
    4. Yao, Hongmin & Qin, Wenping & Jing, Xiang & Zhu, Zhilong & Wang, Ke & Han, Xiaoqing & Wang, Peng, 2022. "Possibilistic evaluation of photovoltaic hosting capacity on distribution networks under uncertain environment," Applied Energy, Elsevier, vol. 324(C).
    5. C. Birk Jones & Matthew Lave & Matthew J. Reno & Rachid Darbali-Zamora & Adam Summers & Shamina Hossain-McKenzie, 2020. "Volt-Var Curve Reactive Power Control Requirements and Risks for Feeders with Distributed Roof-Top Photovoltaic Systems," Energies, MDPI, vol. 13(17), pages 1-17, August.
    6. Ahmed I. Omar & Ziad M. Ali & Mostafa Al-Gabalawy & Shady H. E. Abdel Aleem & Mujahed Al-Dhaifallah, 2020. "Multi-Objective Environmental Economic Dispatch of an Electricity System Considering Integrated Natural Gas Units and Variable Renewable Energy Sources," Mathematics, MDPI, vol. 8(7), pages 1-37, July.
    7. Costa, Vinicius Braga Ferreira da & Bonatto, Benedito Donizeti, 2023. "Cutting-edge public policy proposal to maximize the long-term benefits of distributed energy resources," Renewable Energy, Elsevier, vol. 203(C), pages 357-372.
    8. Muhyaddin Rawa & Abdullah Abusorrah & Yusuf Al-Turki & Saad Mekhilef & Mostafa H. Mostafa & Ziad M. Ali & Shady H. E. Abdel Aleem, 2020. "Optimal Allocation and Economic Analysis of Battery Energy Storage Systems: Self-Consumption Rate and Hosting Capacity Enhancement for Microgrids with High Renewable Penetration," Sustainability, MDPI, vol. 12(23), pages 1-25, December.
    9. Gupta, Ruchi & Pena-Bello, Alejandro & Streicher, Kai Nino & Roduner, Cattia & Farhat, Yamshid & Thöni, David & Patel, Martin Kumar & Parra, David, 2021. "Spatial analysis of distribution grid capacity and costs to enable massive deployment of PV, electric mobility and electric heating," Applied Energy, Elsevier, vol. 287(C).
    10. Chathurangi, D. & Jayatunga, U. & Perera, S., 2022. "Recent investigations on the evaluation of solar PV hosting capacity in LV distribution networks constrained by voltage rise," Renewable Energy, Elsevier, vol. 199(C), pages 11-20.
    11. Hwang, Hyunkyeong & Yoon, Ahyun & Yoon, Yongtae & Moon, Seungil, 2023. "Demand response of HVAC systems for hosting capacity improvement in distribution networks: A comprehensive review and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    12. Faris E. Alfaris, 2023. "A Sensorless Intelligent System to Detect Dust on PV Panels for Optimized Cleaning Units," Energies, MDPI, vol. 16(3), pages 1-17, January.
    13. Vincent Umoh & Innocent Davidson & Abayomi Adebiyi & Unwana Ekpe, 2023. "Methods and Tools for PV and EV Hosting Capacity Determination in Low Voltage Distribution Networks—A Review," Energies, MDPI, vol. 16(8), pages 1-25, April.
    14. Minal S. Salunke & Ramesh S. Karnik & Angadi B. Raju & Vinayak N. Gaitonde, 2024. "Analysis of Transmission System Stability with Distribution Generation Supplying Induction Motor Loads," Mathematics, MDPI, vol. 12(1), pages 1-29, January.
    15. Sherif M. Ismael & Shady H. E. Abdel Aleem & Almoataz Y. Abdelaziz & Ahmed F. Zobaa, 2019. "Probabilistic Hosting Capacity Enhancement in Non-Sinusoidal Power Distribution Systems Using a Hybrid PSOGSA Optimization Algorithm," Energies, MDPI, vol. 12(6), pages 1-23, March.
    16. Rajabi, A. & Elphick, S. & David, J. & Pors, A. & Robinson, D., 2022. "Innovative approaches for assessing and enhancing the hosting capacity of PV-rich distribution networks: An Australian perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    17. Geovane L. Reis & Danilo I. Brandao & João H. Oliveira & Lucas S. Araujo & Braz J. Cardoso Filho, 2022. "Case Study of Single-Controllable Microgrid: A Practical Implementation," Energies, MDPI, vol. 15(17), pages 1-22, September.
    18. Wei Sun & Sam Harrison & Gareth P. Harrison, 2020. "Value of Local Offshore Renewable Resource Diversity for Network Hosting Capacity," Energies, MDPI, vol. 13(22), pages 1-20, November.
    19. Magdalena Bartecka & Grazia Barchi & Józef Paska, 2020. "Time-Series PV Hosting Capacity Assessment with Storage Deployment," Energies, MDPI, vol. 13(10), pages 1-20, May.
    20. Martin Ćalasan & Tatjana Konjić & Katarina Kecojević & Lazar Nikitović, 2020. "Optimal Allocation of Static Var Compensators in Electric Power Systems," Energies, MDPI, vol. 13(12), pages 1-24, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:2:p:263-:d:1563239. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.