IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i8p3609-d1129824.html
   My bibliography  Save this article

Methods and Tools for PV and EV Hosting Capacity Determination in Low Voltage Distribution Networks—A Review

Author

Listed:
  • Vincent Umoh

    (Department of Electrical Power Engineering, Durban University of Technology, Durban 4001, South Africa)

  • Innocent Davidson

    (Department of Electrical, Electronic and Computer Engineering, Cape Peninsula University of Technology, Bellville 7535, South Africa)

  • Abayomi Adebiyi

    (Department of Electrical Power Engineering, Durban University of Technology, Durban 4001, South Africa)

  • Unwana Ekpe

    (Department of Electrical and Electronic Engineering, Akwa Ibom State University, Mkpat Enin 524106, Nigeria)

Abstract

The increasing demand for electricity and the need for environmentally friendly transportation systems has resulted in the proliferation of solar photovoltaic (PV) generators and electric vehicle (EV) charging within the low voltage (LV) distribution network. This high penetration of PV and EV charging can cause power quality challenges, hence the need for hosting capacity (HC) studies to estimate the maximum allowable connections. Although studies and reviews are abundant on the HC of PV and EV charging available in the literature, there is a lack of reviews on HC studies that cover both PV and EVs together. This paper fills this research gap by providing a detailed review of five commonly used methods for quantifying HC including deterministic, time series, stochastic, optimization, and streamlined methods. This paper comprehensively reviews the HC concept, methods, and tools, covering both PV and EV charging based on a survey of state-of-the-art literature published within the last five years (2017–2022). Voltage magnitude, thermal limit, and loading of lines, cables, and transformers are the main performance indices considered in most HC studies.

Suggested Citation

  • Vincent Umoh & Innocent Davidson & Abayomi Adebiyi & Unwana Ekpe, 2023. "Methods and Tools for PV and EV Hosting Capacity Determination in Low Voltage Distribution Networks—A Review," Energies, MDPI, vol. 16(8), pages 1-25, April.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:8:p:3609-:d:1129824
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/8/3609/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/8/3609/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Samar Fatima & Verner Püvi & Matti Lehtonen, 2020. "Review on the PV Hosting Capacity in Distribution Networks," Energies, MDPI, vol. 13(18), pages 1-34, September.
    2. Miha Grabner & Andrej Souvent & Nermin Suljanović & Andrej Košir & Boštjan Blažič, 2019. "Probabilistic Methodology for Calculating PV Hosting Capacity in LV Networks Using Actual Building Roof Data," Energies, MDPI, vol. 12(21), pages 1-15, October.
    3. Alturki, Mansoor & Khodaei, Amin & Paaso, Aleksi & Bahramirad, Shay, 2018. "Optimization-based distribution grid hosting capacity calculations," Applied Energy, Elsevier, vol. 219(C), pages 350-360.
    4. Dichen Liu & Chenxu Wang & Fei Tang & Yixi Zhou, 2020. "Probabilistic Assessment of Hybrid Wind-PV Hosting Capacity in Distribution Systems," Sustainability, MDPI, vol. 12(6), pages 1-19, March.
    5. Kharrazi, A. & Sreeram, V. & Mishra, Y., 2020. "Assessment techniques of the impact of grid-tied rooftop photovoltaic generation on the power quality of low voltage distribution network - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    6. Samet, Haidar & Khorshidsavar, Morteza, 2018. "Analytic time series load flow," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3886-3899.
    7. Yao, Hongmin & Qin, Wenping & Jing, Xiang & Zhu, Zhilong & Wang, Ke & Han, Xiaoqing & Wang, Peng, 2022. "Possibilistic evaluation of photovoltaic hosting capacity on distribution networks under uncertain environment," Applied Energy, Elsevier, vol. 324(C).
    8. Shepero, Mahmoud & Munkhammar, Joakim & Widén, Joakim & Bishop, Justin D.K. & Boström, Tobias, 2018. "Modeling of photovoltaic power generation and electric vehicles charging on city-scale: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 61-71.
    9. Carlos D. Zuluaga-Ríos & Alejandro Villa-Jaramillo & Sergio D. Saldarriaga-Zuluaga, 2022. "Evaluation of Distributed Generation and Electric Vehicles Hosting Capacity in Islanded DC Grids Considering EV Uncertainty," Energies, MDPI, vol. 15(20), pages 1-17, October.
    10. Sadeghian, Hamidreza & Wang, Zhifang, 2020. "A novel impact-assessment framework for distributed PV installations in low-voltage secondary networks," Renewable Energy, Elsevier, vol. 147(P1), pages 2179-2194.
    11. Magdalena Bartecka & Grazia Barchi & Józef Paska, 2020. "Time-Series PV Hosting Capacity Assessment with Storage Deployment," Energies, MDPI, vol. 13(10), pages 1-20, May.
    12. Tiago Elias Castelo de Oliveira & Math Bollen & Paulo Fernando Ribeiro & Pedro M. S. de Carvalho & Antônio C. Zambroni & Benedito D. Bonatto, 2019. "The Concept of Dynamic Hosting Capacity for Distributed Energy Resources: Analytics and Practical Considerations," Energies, MDPI, vol. 12(13), pages 1-18, July.
    13. Ismael, Sherif M. & Abdel Aleem, Shady H.E. & Abdelaziz, Almoataz Y. & Zobaa, Ahmed F., 2019. "State-of-the-art of hosting capacity in modern power systems with distributed generation," Renewable Energy, Elsevier, vol. 130(C), pages 1002-1020.
    14. Mohammad Zain ul Abideen & Omar Ellabban & Luluwah Al-Fagih, 2020. "A Review of the Tools and Methods for Distribution Networks’ Hosting Capacity Calculation," Energies, MDPI, vol. 13(11), pages 1-25, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abayomi A. Adebiyi & Katleho Moloi, 2024. "Renewable Energy Source Utilization Progress in South Africa: A Review," Energies, MDPI, vol. 17(14), pages 1-21, July.
    2. Jake Anderson & Ashish P. Agalgaonkar, 2023. "Low-Voltage Network Modeling and Analysis with Rooftop PV Forecasts: A Realistic Perspective from Queensland, Australia," Energies, MDPI, vol. 16(15), pages 1-23, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karmaker, Ashish Kumar & Prakash, Krishneel & Siddique, Md Nazrul Islam & Hossain, Md Alamgir & Pota, Hemanshu, 2024. "Electric vehicle hosting capacity analysis: Challenges and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    2. Hwang, Hyunkyeong & Yoon, Ahyun & Yoon, Yongtae & Moon, Seungil, 2023. "Demand response of HVAC systems for hosting capacity improvement in distribution networks: A comprehensive review and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    3. Rajabi, A. & Elphick, S. & David, J. & Pors, A. & Robinson, D., 2022. "Innovative approaches for assessing and enhancing the hosting capacity of PV-rich distribution networks: An Australian perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    4. Ibrahim Mohamed Diaaeldin & Shady H. E. Abdel Aleem & Ahmed El-Rafei & Almoataz Y. Abdelaziz & Ahmed F. Zobaa, 2020. "Enhancement of Hosting Capacity with Soft Open Points and Distribution System Reconfiguration: Multi-Objective Bilevel Stochastic Optimization," Energies, MDPI, vol. 13(20), pages 1-20, October.
    5. Ezequiel Junio Lima & Luiz Carlos Gomes Freitas, 2022. "Hosting Capacity Calculation Deploying a Hybrid Methodology: A Case Study Concerning the Intermittent Nature of Photovoltaic Distributed Generation and the Variable Nature of Energy Consumption in a M," Energies, MDPI, vol. 15(3), pages 1-16, February.
    6. Koirala, Arpan & Van Acker, Tom & D’hulst, Reinhilde & Van Hertem, Dirk, 2022. "Hosting capacity of photovoltaic systems in low voltage distribution systems: A benchmark of deterministic and stochastic approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    7. Yao, Hongmin & Qin, Wenping & Jing, Xiang & Zhu, Zhilong & Wang, Ke & Han, Xiaoqing & Wang, Peng, 2022. "Possibilistic evaluation of photovoltaic hosting capacity on distribution networks under uncertain environment," Applied Energy, Elsevier, vol. 324(C).
    8. Chathurangi, D. & Jayatunga, U. & Perera, S., 2022. "Recent investigations on the evaluation of solar PV hosting capacity in LV distribution networks constrained by voltage rise," Renewable Energy, Elsevier, vol. 199(C), pages 11-20.
    9. Illia Diahovchenko & Lubov Petrichenko, 2022. "Comparative Analysis of Power Distribution Systems with Individual Prosumers Owing Photovoltaic Installations and Solar Energy Communities in Terms of Profitability and Hosting Capacity," Energies, MDPI, vol. 15(23), pages 1-20, November.
    10. Magdalena Bartecka & Grazia Barchi & Józef Paska, 2020. "Time-Series PV Hosting Capacity Assessment with Storage Deployment," Energies, MDPI, vol. 13(10), pages 1-20, May.
    11. Shaila Arif & Ata E Rabbi & Shams Uddin Ahmed & Molla Shahadat Hossain Lipu & Taskin Jamal & Tareq Aziz & Mahidur R. Sarker & Amna Riaz & Talal Alharbi & Muhammad Majid Hussain, 2022. "Enhancement of Solar PV Hosting Capacity in a Remote Industrial Microgrid: A Methodical Techno-Economic Approach," Sustainability, MDPI, vol. 14(14), pages 1-23, July.
    12. Mohammad Zain ul Abideen & Omar Ellabban & Luluwah Al-Fagih, 2020. "A Review of the Tools and Methods for Distribution Networks’ Hosting Capacity Calculation," Energies, MDPI, vol. 13(11), pages 1-25, June.
    13. Hubert Kryszk & Krystyna Kurowska & Renata Marks-Bielska & Stanisław Bielski & Bartłomiej Eźlakowski, 2023. "Barriers and Prospects for the Development of Renewable Energy Sources in Poland during the Energy Crisis," Energies, MDPI, vol. 16(4), pages 1-17, February.
    14. Md Tariqul Islam & M. J. Hossain, 2023. "Artificial Intelligence for Hosting Capacity Analysis: A Systematic Literature Review," Energies, MDPI, vol. 16(4), pages 1-33, February.
    15. Ramitha Dissanayake & Akila Wijethunge & Janaka Wijayakulasooriya & Janaka Ekanayake, 2022. "Optimizing PV-Hosting Capacity with the Integrated Employment of Dynamic Line Rating and Voltage Regulation," Energies, MDPI, vol. 15(22), pages 1-19, November.
    16. Costa, Vinicius Braga Ferreira da & Bonatto, Benedito Donizeti, 2023. "Cutting-edge public policy proposal to maximize the long-term benefits of distributed energy resources," Renewable Energy, Elsevier, vol. 203(C), pages 357-372.
    17. Andrei M. Tudose & Dorian O. Sidea & Irina I. Picioroaga & Nicolae Anton & Constantin Bulac, 2023. "Increasing Distributed Generation Hosting Capacity Based on a Sequential Optimization Approach Using an Improved Salp Swarm Algorithm," Mathematics, MDPI, vol. 12(1), pages 1-22, December.
    18. Ahmed M. Mahmoud & Shady H. E. Abdel Aleem & Almoataz Y. Abdelaziz & Mohamed Ezzat, 2022. "Towards Maximizing Hosting Capacity by Optimal Planning of Active and Reactive Power Compensators and Voltage Regulators: Case Study," Sustainability, MDPI, vol. 14(20), pages 1-34, October.
    19. Hartvigsson, Elias & Odenberger, Mikael & Chen, Peiyuan & Nyholm, Emil, 2021. "Estimating national and local low-voltage grid capacity for residential solar photovoltaic in Sweden, UK and Germany," Renewable Energy, Elsevier, vol. 171(C), pages 915-926.
    20. Ricardo de Oliveira & Leonardo Willer de Oliveira & Edimar José de Oliveira, 2023. "Optimization Approach for Planning Soft Open Points in a MV-Distribution System to Maximize the Hosting Capacity," Energies, MDPI, vol. 16(3), pages 1-22, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:8:p:3609-:d:1129824. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.