IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v187y2023ics1364032123006081.html
   My bibliography  Save this article

Demand response of HVAC systems for hosting capacity improvement in distribution networks: A comprehensive review and case study

Author

Listed:
  • Hwang, Hyunkyeong
  • Yoon, Ahyun
  • Yoon, Yongtae
  • Moon, Seungil

Abstract

With the declaration of the net-zero emission pledge by 2050, improving the hosting capacity of distributed generations is crucial for the distribution system operators to operate the distribution networks efficiently and reliably. This study presents a comprehensive review of hosting capacity improvement methods and demand response strategies using heating, ventilating, and air-conditioning systems. Hosting capacity improvement methods are analyzed through the limiting factors of hosting capacity, including voltage variation, overloading and power loss, and power quality problems, while considering network conditions. Moreover, the optimal demand response strategies that use heating, ventilating, and air-conditioning systems are analyzed while considering network operation, and the practical demand response cases of different countries are summarized. Accordingly, we propose a hosting capacity enhancement method based on the optimal price-based demand response program of heating, ventilating, and air-conditioning systems in commercial buildings considering the overvoltage problem in the distribution network. The proposed method is based on a bi-level decision model that considers the distribution system operator's profits and end-users’ costs and an experimental thermal dynamics model of heating, ventilating, and air-conditioning systems with piecewise linearization. The case studies simulated in a large-scale distribution network reveal that the optimal demand response schedules of heating, ventilating, and air-conditioning systems enhance photovoltaic penetration while maintaining voltage stability and ensuring thermal comfort of the building occupants. The results demonstrate the prospects of developing a demand response program via heating, ventilating, and air-conditioning systems as a hosting capacity improvement method without additional facilities in distribution networks.

Suggested Citation

  • Hwang, Hyunkyeong & Yoon, Ahyun & Yoon, Yongtae & Moon, Seungil, 2023. "Demand response of HVAC systems for hosting capacity improvement in distribution networks: A comprehensive review and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
  • Handle: RePEc:eee:rensus:v:187:y:2023:i:c:s1364032123006081
    DOI: 10.1016/j.rser.2023.113751
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123006081
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.113751?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jain, Akshay Kumar & Horowitz, Kelsey & Ding, Fei & Sedzro, Kwami Senam & Palmintier, Bryan & Mather, Barry & Jain, Himanshu, 2020. "Dynamic hosting capacity analysis for distributed photovoltaic resources—Framework and case study," Applied Energy, Elsevier, vol. 280(C).
    2. Kim, Youngjin & Norford, Leslie K., 2017. "Optimal use of thermal energy storage resources in commercial buildings through price-based demand response considering distribution network operation," Applied Energy, Elsevier, vol. 193(C), pages 308-324.
    3. Samar Fatima & Verner Püvi & Matti Lehtonen, 2020. "Review on the PV Hosting Capacity in Distribution Networks," Energies, MDPI, vol. 13(18), pages 1-34, September.
    4. Imani, Mahmood Hosseini & Ghadi, M. Jabbari & Ghavidel, Sahand & Li, Li, 2018. "Demand Response Modeling in Microgrid Operation: a Review and Application for Incentive-Based and Time-Based Programs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 486-499.
    5. Wang, Huilong & Wang, Shengwei, 2021. "A hierarchical optimal control strategy for continuous demand response of building HVAC systems to provide frequency regulation service to smart power grids," Energy, Elsevier, vol. 230(C).
    6. Fadzli Haniff, Mohamad & Selamat, Hazlina & Yusof, Rubiyah & Buyamin, Salinda & Sham Ismail, Fatimah, 2013. "Review of HVAC scheduling techniques for buildings towards energy-efficient and cost-effective operations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 94-103.
    7. Yoon, Ah-Yun & Kim, Young-Jin & Zakula, Tea & Moon, Seung-Ill, 2020. "Retail electricity pricing via online-learning of data-driven demand response of HVAC systems," Applied Energy, Elsevier, vol. 265(C).
    8. Lu, Renzhi & Hong, Seung Ho, 2019. "Incentive-based demand response for smart grid with reinforcement learning and deep neural network," Applied Energy, Elsevier, vol. 236(C), pages 937-949.
    9. Haque, M. Mejbaul & Wolfs, Peter, 2016. "A review of high PV penetrations in LV distribution networks: Present status, impacts and mitigation measures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1195-1208.
    10. Soroudi, Alireza & Rabiee, Abbas & Keane, Andrew, 2017. "Distribution networks' energy losses versus hosting capacity of wind power in the presence of demand flexibility," Renewable Energy, Elsevier, vol. 102(PB), pages 316-325.
    11. Alturki, Mansoor & Khodaei, Amin & Paaso, Aleksi & Bahramirad, Shay, 2018. "Optimization-based distribution grid hosting capacity calculations," Applied Energy, Elsevier, vol. 219(C), pages 350-360.
    12. Meesenburg, Wiebke & Markussen, Wiebke Brix & Ommen, Torben & Elmegaard, Brian, 2020. "Optimizing control of two-stage ammonia heat pump for fast regulation of power uptake," Applied Energy, Elsevier, vol. 271(C).
    13. Emilio J. Palacios-Garcia & Antonio Moreno-Muñoz & Isabel Santiago & Isabel M. Moreno-Garcia & María I. Milanés-Montero, 2017. "PV Hosting Capacity Analysis and Enhancement Using High Resolution Stochastic Modeling," Energies, MDPI, vol. 10(10), pages 1-22, September.
    14. Koirala, Arpan & Van Acker, Tom & D’hulst, Reinhilde & Van Hertem, Dirk, 2022. "Hosting capacity of photovoltaic systems in low voltage distribution systems: A benchmark of deterministic and stochastic approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    15. Lim, Keumju & Lee, Jongsu & Lee, Hyunjoo, 2021. "Implementing automated residential demand response in South Korea: Consumer preferences and market potential," Utilities Policy, Elsevier, vol. 70(C).
    16. Eshan Karunarathne & Akila Wijethunge & Janaka Ekanayake, 2021. "Enhancing PV Hosting Capacity Using Voltage Control and Employing Dynamic Line Rating," Energies, MDPI, vol. 15(1), pages 1-19, December.
    17. Hu, Maomao & Xiao, Fu, 2018. "Price-responsive model-based optimal demand response control of inverter air conditioners using genetic algorithm," Applied Energy, Elsevier, vol. 219(C), pages 151-164.
    18. Emmanuel, Michael & Rayudu, Ramesh, 2017. "Evolution of dispatchable photovoltaic system integration with the electric power network for smart grid applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 207-224.
    19. Chathurangi, D. & Jayatunga, U. & Perera, S. & Agalgaonkar, A.P. & Siyambalapitiya, T., 2021. "Comparative evaluation of solar PV hosting capacity enhancement using Volt-VAr and Volt-Watt control strategies," Renewable Energy, Elsevier, vol. 177(C), pages 1063-1075.
    20. Ismael, Sherif M. & Abdel Aleem, Shady H.E. & Abdelaziz, Almoataz Y. & Zobaa, Ahmed F., 2019. "State-of-the-art of hosting capacity in modern power systems with distributed generation," Renewable Energy, Elsevier, vol. 130(C), pages 1002-1020.
    21. Gjorgievski, Vladimir Z. & Markovska, Natasa & Abazi, Alajdin & Duić, Neven, 2021. "The potential of power-to-heat demand response to improve the flexibility of the energy system: An empirical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    22. Shaukat, N. & Ali, S.M. & Mehmood, C.A. & Khan, B. & Jawad, M. & Farid, U. & Ullah, Z. & Anwar, S.M. & Majid, M., 2018. "A survey on consumers empowerment, communication technologies, and renewable generation penetration within Smart Grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1453-1475.
    23. Yan, Xing & Ozturk, Yusuf & Hu, Zechun & Song, Yonghua, 2018. "A review on price-driven residential demand response," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 411-419.
    24. Kharrazi, A. & Sreeram, V. & Mishra, Y., 2020. "Assessment techniques of the impact of grid-tied rooftop photovoltaic generation on the power quality of low voltage distribution network - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    25. Aikaterini Forouli & Emmanouil A. Bakirtzis & Georgios Papazoglou & Konstantinos Oureilidis & Vasileios Gkountis & Luisa Candido & Eloi Delgado Ferrer & Pandelis Biskas, 2021. "Assessment of Demand Side Flexibility in European Electricity Markets: A Country Level Review," Energies, MDPI, vol. 14(8), pages 1-23, April.
    26. Winstead, Christopher & Bhandari, Mahabir & Nutaro, James & Kuruganti, Teja, 2020. "Peak load reduction and load shaping in HVAC and refrigeration systems in commercial buildings by using a novel lightweight dynamic priority-based control strategy," Applied Energy, Elsevier, vol. 277(C).
    27. Davarzani, Sima & Pisica, Ioana & Taylor, Gareth A. & Munisami, Kevin J., 2021. "Residential Demand Response Strategies and Applications in Active Distribution Network Management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    28. Xu, Xu & Li, Jiayong & Xu, Zhao & Zhao, Jian & Lai, Chun Sing, 2019. "Enhancing photovoltaic hosting capacity—A stochastic approach to optimal planning of static var compensator devices in distribution networks," Applied Energy, Elsevier, vol. 238(C), pages 952-962.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meng, Qinglong & Wei, Ying'an & Fan, Jingjing & Li, Yanbo & Zhao, Fan & Lei, Yu & Sun, Hang & Jiang, Le & Yu, Lingli, 2024. "Peak regulation strategies for ground source heat pump demand response of based on load forecasting: A case study of rural building in China," Renewable Energy, Elsevier, vol. 224(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rajabi, A. & Elphick, S. & David, J. & Pors, A. & Robinson, D., 2022. "Innovative approaches for assessing and enhancing the hosting capacity of PV-rich distribution networks: An Australian perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    2. Koirala, Arpan & Van Acker, Tom & D’hulst, Reinhilde & Van Hertem, Dirk, 2022. "Hosting capacity of photovoltaic systems in low voltage distribution systems: A benchmark of deterministic and stochastic approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    3. Karmaker, Ashish Kumar & Prakash, Krishneel & Siddique, Md Nazrul Islam & Hossain, Md Alamgir & Pota, Hemanshu, 2024. "Electric vehicle hosting capacity analysis: Challenges and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    4. Vincent Umoh & Innocent Davidson & Abayomi Adebiyi & Unwana Ekpe, 2023. "Methods and Tools for PV and EV Hosting Capacity Determination in Low Voltage Distribution Networks—A Review," Energies, MDPI, vol. 16(8), pages 1-25, April.
    5. Ismael, Sherif M. & Abdel Aleem, Shady H.E. & Abdelaziz, Almoataz Y. & Zobaa, Ahmed F., 2019. "State-of-the-art of hosting capacity in modern power systems with distributed generation," Renewable Energy, Elsevier, vol. 130(C), pages 1002-1020.
    6. Ibrahim Mohamed Diaaeldin & Shady H. E. Abdel Aleem & Ahmed El-Rafei & Almoataz Y. Abdelaziz & Ahmed F. Zobaa, 2020. "Enhancement of Hosting Capacity with Soft Open Points and Distribution System Reconfiguration: Multi-Objective Bilevel Stochastic Optimization," Energies, MDPI, vol. 13(20), pages 1-20, October.
    7. Li, Zening & Su, Su & Jin, Xiaolong & Chen, Houhe, 2021. "Distributed energy management for active distribution network considering aggregated office buildings," Renewable Energy, Elsevier, vol. 180(C), pages 1073-1087.
    8. Ahmed M. Mahmoud & Shady H. E. Abdel Aleem & Almoataz Y. Abdelaziz & Mohamed Ezzat, 2022. "Towards Maximizing Hosting Capacity by Optimal Planning of Active and Reactive Power Compensators and Voltage Regulators: Case Study," Sustainability, MDPI, vol. 14(20), pages 1-34, October.
    9. da Fonseca, André L.A. & Chvatal, Karin M.S. & Fernandes, Ricardo A.S., 2021. "Thermal comfort maintenance in demand response programs: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    10. Dichen Liu & Chenxu Wang & Fei Tang & Yixi Zhou, 2020. "Probabilistic Assessment of Hybrid Wind-PV Hosting Capacity in Distribution Systems," Sustainability, MDPI, vol. 12(6), pages 1-19, March.
    11. Zheng, Shunlin & Sun, Yi & Li, Bin & Qi, Bing & Zhang, Xudong & Li, Fei, 2021. "Incentive-based integrated demand response for multiple energy carriers under complex uncertainties and double coupling effects," Applied Energy, Elsevier, vol. 283(C).
    12. Hlalele, Thabo G. & Zhang, Jiangfeng & Naidoo, Raj M. & Bansal, Ramesh C., 2021. "Multi-objective economic dispatch with residential demand response programme under renewable obligation," Energy, Elsevier, vol. 218(C).
    13. Guo, Rui & Meunier, Simon & Protopapadaki, Christina & Saelens, Dirk, 2023. "A review of European low-voltage distribution networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    14. Jude Suchithra & Duane Robinson & Amin Rajabi, 2023. "Hosting Capacity Assessment Strategies and Reinforcement Learning Methods for Coordinated Voltage Control in Electricity Distribution Networks: A Review," Energies, MDPI, vol. 16(5), pages 1-28, March.
    15. Cho, Yongjun & Lee, Eunjung & Baek, Keon & Kim, Jinho, 2023. "Stochastic Optimization-Based hosting capacity estimation with volatile net load deviation in distribution grids," Applied Energy, Elsevier, vol. 341(C).
    16. Davarzani, Sima & Pisica, Ioana & Taylor, Gareth A. & Munisami, Kevin J., 2021. "Residential Demand Response Strategies and Applications in Active Distribution Network Management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    17. Yamaguchi, Yohei & Shoda, Yuto & Yoshizawa, Shinya & Imai, Tatsuya & Perwez, Usama & Shimoda, Yoshiyuki & Hayashi, Yasuhiro, 2023. "Feasibility assessment of net zero-energy transformation of building stock using integrated synthetic population, building stock, and power distribution network framework," Applied Energy, Elsevier, vol. 333(C).
    18. Yao, Hongmin & Qin, Wenping & Jing, Xiang & Zhu, Zhilong & Wang, Ke & Han, Xiaoqing & Wang, Peng, 2022. "Possibilistic evaluation of photovoltaic hosting capacity on distribution networks under uncertain environment," Applied Energy, Elsevier, vol. 324(C).
    19. Xu, Fangyuan & Zhu, Weidong & Wang, Yi Fei & Lai, Chun Sing & Yuan, Haoliang & Zhao, Yujia & Guo, Siming & Fu, Zhengxin, 2022. "A new deregulated demand response scheme for load over-shifting city in regulated power market," Applied Energy, Elsevier, vol. 311(C).
    20. Amit Shewale & Anil Mokhade & Nitesh Funde & Neeraj Dhanraj Bokde, 2022. "A Survey of Efficient Demand-Side Management Techniques for the Residential Appliance Scheduling Problem in Smart Homes," Energies, MDPI, vol. 15(8), pages 1-34, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:187:y:2023:i:c:s1364032123006081. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.