IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v24y2022i8d10.1007_s10668-021-01858-3.html
   My bibliography  Save this article

The conceptual framework to determine interrelations and interactions for holistic Water, Energy, and Food Nexus

Author

Listed:
  • Abbas Afshar

    (Iran University of Science and Technology)

  • Elham Soleimanian

    (Iran University of Science and Technology)

  • Hossein Akbari Variani

    (Iran University of Science and Technology)

  • Masoud Vahabzadeh

    (Iran University of Science and Technology)

  • Amir Molajou

    (Iran University of Science and Technology)

Abstract

Several models with a variety of concepts and approaches have been proposed to address different aspects of the Water-Energy-Food (WEF) nexus system. In some models, the interaction between WEF resources is considered without considering the internal relationships between subsystems and vice versa. This is while, a comprehensive model should consider all internal and external relationships between the three subsystems which are named interrelations and interactions, respectively. Therefore, this study was an initial step to introduce the holistic WEF nexus simulator framework and its components. In a holistic model, it is axiomatic that extensive data should be gathered. Hence, in the second step, the authors attempted to classify the huge amount of required data into two distinct categories: (1) non-simulated data (independent parameters, independent variables, and management parameters) and (2) simulated data (IFs and THENs). In addition to providing valuable feedback on the WEF nexus concept and providing required data for policy evaluation and assessment, listing and classifying the required data and describing them in terms of IFs and THENs will provide valuable insight. This study shows how extensive data can be accessed and shared within a comprehensive nexus simulation model. As a result of using this classification method, the interrelations between each subsystem and the interactions with other subsystems in the nexus model can be extracted simply, and none of them will be overlooked due to lack of knowledge about the nexus system. Additionally, these IFs and THENs variables are considered as a great solution to diminish the complexity of the nexus system to implement it.

Suggested Citation

  • Abbas Afshar & Elham Soleimanian & Hossein Akbari Variani & Masoud Vahabzadeh & Amir Molajou, 2022. "The conceptual framework to determine interrelations and interactions for holistic Water, Energy, and Food Nexus," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(8), pages 10119-10140, August.
  • Handle: RePEc:spr:endesu:v:24:y:2022:i:8:d:10.1007_s10668-021-01858-3
    DOI: 10.1007/s10668-021-01858-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-021-01858-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-021-01858-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. repec:bla:devpol:v:21:y:2003:i:5-6:p:531-553 is not listed on IDEAS
    2. Giampietro, Mario & Mayumi, Kozo & Ramos-Martin, Jesus, 2009. "Multi-scale integrated analysis of societal and ecosystem metabolism (MuSIASEM): Theoretical concepts and basic rationale," Energy, Elsevier, vol. 34(3), pages 313-322.
    3. Sumiter Broca, 2002. "Food Insecurity, Poverty and Agriculture: A Concept Paper," Working Papers 02-15, Agricultural and Development Economics Division of the Food and Agriculture Organization of the United Nations (FAO - ESA).
    4. Jelili Adegboyega Adebiyi & Laura Schmitt Olabisi & Lin Liu & Dee Jordan, 2021. "Water–food–energy–climate nexus and technology productivity: a Nigerian case study of organic leafy vegetable production," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 6128-6147, April.
    5. Abbas Afshar & Mina Khosravi & Amir Molajou, 2021. "Assessing Adaptability of Cyclic and Non-Cyclic Approach to Conjunctive use of Groundwater and Surface water for Sustainable Management Plans under Climate Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(11), pages 3463-3479, September.
    6. Sadeghi, Seyed Hamidreza & Sharifi Moghadam, Ehsan & Delavar, Majid & Zarghami, Mahdi, 2020. "Application of water-energy-food nexus approach for designating optimal agricultural management pattern at a watershed scale," Agricultural Water Management, Elsevier, vol. 233(C).
    7. Amir Molajou & Vahid Nourani & Abbas Afshar & Mina Khosravi & Adam Brysiewicz, 2021. "Correction to: Optimal Design and Feature Selection by Genetic Algorithm for Emotional Artificial Neural Network (EANN) in Rainfall-Runoff Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(8), pages 2385-2385, June.
    8. Bazilian, Morgan & Rogner, Holger & Howells, Mark & Hermann, Sebastian & Arent, Douglas & Gielen, Dolf & Steduto, Pasquale & Mueller, Alexander & Komor, Paul & Tol, Richard S.J. & Yumkella, Kandeh K., 2011. "Considering the energy, water and food nexus: Towards an integrated modelling approach," Energy Policy, Elsevier, vol. 39(12), pages 7896-7906.
    9. Broca, Sumiter S., 2002. "Food insecurity, poverty and agriculture: a concept paper," ESA Working Papers 289099, Food and Agriculture Organization of the United Nations, Agricultural Development Economics Division (ESA).
    10. Valeria De Laurentiis & Dexter V.L. Hunt & Christopher D.F. Rogers, 2016. "Overcoming Food Security Challenges within an Energy/Water/Food Nexus (EWFN) Approach," Sustainability, MDPI, vol. 8(1), pages 1-23, January.
    11. Amir Molajou & Vahid Nourani & Abbas Afshar & Mina Khosravi & Adam Brysiewicz, 2021. "Optimal Design and Feature Selection by Genetic Algorithm for Emotional Artificial Neural Network (EANN) in Rainfall-Runoff Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(8), pages 2369-2384, June.
    12. Martinez-Hernandez, Elias & Leach, Matthew & Yang, Aidong, 2017. "Understanding water-energy-food and ecosystem interactions using the nexus simulation tool NexSym," Applied Energy, Elsevier, vol. 206(C), pages 1009-1021.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Yanlai & Chang, Fi-John & Chang, Li-Chiu & Herricks, Edwin, 2024. "Elevating urban sustainability: An intelligent framework for optimizing water-energy-food nexus synergies in metabolic landscapes," Applied Energy, Elsevier, vol. 360(C).
    2. Vadim V. Ponkratov & Alexey S. Kuznetsov & Iskandar Muda & Miftahul Jannah Nasution & Mohammed Al-Bahrani & Hikmet Ş. Aybar, 2022. "Investigating the Index of Sustainable Development and Reduction in Greenhouse Gases of Renewable Energies," Sustainability, MDPI, vol. 14(22), pages 1-13, November.
    3. Cuimei Lv & Yuguang Hu & Minhua Ling & Aojie Luo & Denghua Yan, 2024. "Comprehensive evaluation and obstacle factors of coordinated development of regional water–ecology–energy–food nexus," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(8), pages 20001-20025, August.
    4. Wongchai Anupong & Muhsin Jaber Jweeg & Sameer Alani & Ibrahim H. Al-Kharsan & Aníbal Alviz-Meza & Yulineth Cárdenas-Escrocia, 2023. "Comparison of Wavelet Artificial Neural Network, Wavelet Support Vector Machine, and Adaptive Neuro-Fuzzy Inference System Methods in Estimating Total Solar Radiation in Iraq," Energies, MDPI, vol. 16(2), pages 1-14, January.
    5. Oriza Candra & Abdeljelil Chammam & José Ricardo Nuñez Alvarez & Iskandar Muda & Hikmet Ş. Aybar, 2023. "The Impact of Renewable Energy Sources on the Sustainable Development of the Economy and Greenhouse Gas Emissions," Sustainability, MDPI, vol. 15(3), pages 1-11, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cássia Juliana Fernandes Torres & Camilla Hellen Peixoto de Lima & Bárbara Suzart de Almeida Goodwin & Terencio Rebello de Aguiar Junior & Andrea Sousa Fontes & Daniel Veras Ribeiro & Rodrigo Saldanha, 2019. "A Literature Review to Propose a Systematic Procedure to Develop “Nexus Thinking” Considering the Water–Energy–Food Nexus," Sustainability, MDPI, vol. 11(24), pages 1-32, December.
    2. White, David J. & Hubacek, Klaus & Feng, Kuishuang & Sun, Laixiang & Meng, Bo, 2018. "The Water-Energy-Food Nexus in East Asia: A tele-connected value chain analysis using inter-regional input-output analysis," Applied Energy, Elsevier, vol. 210(C), pages 550-567.
    3. Pitak Ngammuangtueng & Napat Jakrawatana & Pariyapat Nilsalab & Shabbir H. Gheewala, 2019. "Water, Energy and Food Nexus in Rice Production in Thailand," Sustainability, MDPI, vol. 11(20), pages 1-21, October.
    4. Mina Khosravi & Abbas Afshar & Amir Molajou, 2022. "Decision Tree-Based Conditional Operation Rules for Optimal Conjunctive Use of Surface and Groundwater," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(6), pages 2013-2025, April.
    5. Jing Zhu & Shenghong Kang & Wenwu Zhao & Qiujie Li & Xinyuan Xie & Xiangping Hu, 2020. "A Bibliometric Analysis of Food–Energy–Water Nexus: Progress and Prospects," Land, MDPI, vol. 9(12), pages 1-22, December.
    6. Zhang, Tong & Tan, Qian & Yu, Xiaoning & Zhang, Shan, 2020. "Synergy assessment and optimization for water-energy-food nexus: Modeling and application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    7. Ding, Tao & Liang, Liang & Zhou, Kaile & Yang, Min & Wei, Yuqi, 2020. "Water-energy nexus: The origin, development and prospect," Ecological Modelling, Elsevier, vol. 419(C).
    8. Sarah F. W. Taylor & Michael J. Roberts & Ben Milligan & Ronney Ncwadi, 2019. "Measurement and implications of marine food security in the Western Indian Ocean: an impending crisis?," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 11(6), pages 1395-1415, December.
    9. Dzanku, Fred Mawunyo, 2019. "Food security in rural sub-Saharan Africa: Exploring the nexus between gender, geography and off-farm employment," World Development, Elsevier, vol. 113(C), pages 26-43.
    10. Hasanzadeh Saray, Marzieh & Baubekova, Aziza & Gohari, Alireza & Eslamian, Seyed Saeid & Klove, Bjorn & Torabi Haghighi, Ali, 2022. "Optimization of Water-Energy-Food Nexus considering CO2 emissions from cropland: A case study in northwest Iran," Applied Energy, Elsevier, vol. 307(C).
    11. Shasha Xu & Weijun He & Juqin Shen & Dagmawi Mulugeta Degefu & Liang Yuan & Yang Kong, 2019. "Coupling and Coordination Degrees of the Core Water–Energy–Food Nexus in China," IJERPH, MDPI, vol. 16(9), pages 1-18, May.
    12. Ghosh, Bikramaditya & Gubareva, Mariya & Ghosh, Anandita & Paparas, Dimitrios & Vo, Xuan Vinh, 2024. "Food, energy, and water nexus: A study on interconnectedness and trade-offs," Energy Economics, Elsevier, vol. 133(C).
    13. Chen, Pi-Cheng & Alvarado, Valeria & Hsu, Shu-Chien, 2018. "Water energy nexus in city and hinterlands: Multi-regional physical input-output analysis for Hong Kong and South China," Applied Energy, Elsevier, vol. 225(C), pages 986-997.
    14. Nhamo, Luxon & Ndlela, B. & Nhemachena, Charles & Mabhaudhi, T. & Mpandeli, S. & Matchaya, Greenwell, 2018. "The water-energy-food nexus: climate risks and opportunities in southern Africa," Papers published in Journals (Open Access), International Water Management Institute, pages 10(5):1-18..
    15. Ming-Che Hu & Chihhao Fan & Tailin Huang & Chi-Fang Wang & Yu-Hui Chen, 2018. "Urban Metabolic Analysis of a Food-Water-Energy System for Sustainable Resources Management," IJERPH, MDPI, vol. 16(1), pages 1-11, December.
    16. World Bank, 2013. "Burkina Faso : Perceived Shocks, Vulnerability, Food Insecurity, and Poverty," World Bank Publications - Reports 15988, The World Bank Group.
    17. Rianna Teresa Murray & Gili Marbach-Ad & Kelsey McKee & Amy Rebecca Sapkota, 2021. "Experiential Graduate Course Prepares Transdisciplinary Future Leaders to Innovate at the Food-Energy-Water Nexus," Sustainability, MDPI, vol. 13(3), pages 1-20, January.
    18. Li, Mo & Li, Haiyan & Fu, Qiang & Liu, Dong & Yu, Lei & Li, Tianxiao, 2021. "Approach for optimizing the water-land-food-energy nexus in agroforestry systems under climate change," Agricultural Systems, Elsevier, vol. 192(C).
    19. Feng, Cuiyang & Qu, Shen & Jin, Yi & Tang, Xu & Liang, Sai & Chiu, Anthony S.F. & Xu, Ming, 2019. "Uncovering urban food-energy-water nexus based on physical input-output analysis: The case of the Detroit Metropolitan Area," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    20. Sierra, Jaime Cevallos, 2016. "Estimating road transport fuel consumption in Ecuador," Energy Policy, Elsevier, vol. 92(C), pages 359-368.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:24:y:2022:i:8:d:10.1007_s10668-021-01858-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.