IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i17p4263-d1464355.html
   My bibliography  Save this article

A Photovoltaic Fault Diagnosis Method Integrating Photovoltaic Power Prediction and EWMA Control Chart

Author

Listed:
  • Jun Su

    (School of Electrical Engineering and Automation, Xiamen University of Technology, No. 600, Ligong Road, Jimei District, Xiamen 361024, China
    Xiamen Key Laboratory of Frontier Electric Power Equipment and Intelligent Control, Xiamen 361024, China)

  • Zhiyuan Zeng

    (School of Electrical Engineering and Automation, Xiamen University of Technology, No. 600, Ligong Road, Jimei District, Xiamen 361024, China)

  • Chaolong Tang

    (School of Electrical Engineering and Automation, Xiamen University of Technology, No. 600, Ligong Road, Jimei District, Xiamen 361024, China)

  • Zhiquan Liu

    (School of Electrical Engineering and Automation, Xiamen University of Technology, No. 600, Ligong Road, Jimei District, Xiamen 361024, China)

  • Tianyou Li

    (School of Electrical Engineering and Automation, Xiamen University of Technology, No. 600, Ligong Road, Jimei District, Xiamen 361024, China
    Xiamen Key Laboratory of Frontier Electric Power Equipment and Intelligent Control, Xiamen 361024, China)

Abstract

The inevitability of faults arises due to prolonged exposure of photovoltaic (PV) power plants to intricate environmental conditions. Therefore, fault diagnosis of PV power plants is crucial to ensure the continuity and reliability of power generation. This paper proposes a fault diagnosis method that integrates PV power prediction and an exponentially weighted moving average (EWMA) control chart. This method predicts the PV power based on meteorological factors using the adaptive particle swarm algorithm-back propagation neural network (APSO-BPNN) model and takes its error from the actual value as a control quantity for the EWMA control chart. The EWMA control chart then monitors the error values to identify fault types. Finally, it is verified by comparison with the discrete rate (DR) analysis method. The results showed that the coefficient of determination of the prediction model of the proposed method reached 0.98. Although the DR analysis can evaluate the overall performance of the inverter and identify the faults, it often fails to point out the specific location of the faults accurately. In contrast, the EWMA control chart can monitor abnormal states such as open and short circuits and accurately locate the string where the fault occurs.

Suggested Citation

  • Jun Su & Zhiyuan Zeng & Chaolong Tang & Zhiquan Liu & Tianyou Li, 2024. "A Photovoltaic Fault Diagnosis Method Integrating Photovoltaic Power Prediction and EWMA Control Chart," Energies, MDPI, vol. 17(17), pages 1-22, August.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:17:p:4263-:d:1464355
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/17/4263/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/17/4263/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Weihua Tian & Yan Bao & Wei Liu & Naeem Jan, 2022. "Wind Power Forecasting by the BP Neural Network with the Support of Machine Learning," Mathematical Problems in Engineering, Hindawi, vol. 2022, pages 1-10, April.
    2. Meenal, R. & Selvakumar, A. Immanuel, 2018. "Assessment of SVM, empirical and ANN based solar radiation prediction models with most influencing input parameters," Renewable Energy, Elsevier, vol. 121(C), pages 324-343.
    3. Jun-Hyun Shin & Jin-O Kim, 2020. "On-Line Diagnosis and Fault State Classification Method of Photovoltaic Plant," Energies, MDPI, vol. 13(17), pages 1-12, September.
    4. Ding, Kun & Chen, Xiang & Jiang, Meng & Yang, Hang & Chen, Xihui & Zhang, Jingwei & Gao, Ruiguang & Cui, Liu, 2024. "Feature extraction and fault diagnosis of photovoltaic array based on current–voltage conversion," Applied Energy, Elsevier, vol. 353(PB).
    5. Zixia Yuan & Guojiang Xiong & Xiaofan Fu, 2022. "Artificial Neural Network for Fault Diagnosis of Solar Photovoltaic Systems: A Survey," Energies, MDPI, vol. 15(22), pages 1-18, November.
    6. Li, Pengtao & Zhou, Kaile & Lu, Xinhui & Yang, Shanlin, 2020. "A hybrid deep learning model for short-term PV power forecasting," Applied Energy, Elsevier, vol. 259(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elias Roumpakias & Tassos Stamatelos, 2023. "Comparative Performance Analysis of a Grid-Connected Photovoltaic Plant in Central Greece after Several Years of Operation Using Neural Networks," Sustainability, MDPI, vol. 15(10), pages 1-26, May.
    2. Zhang, Meng & Guo, Huan & Sun, Ming & Liu, Sifeng & Forrest, Jeffrey, 2022. "A novel flexible grey multivariable model and its application in forecasting energy consumption in China," Energy, Elsevier, vol. 239(PE).
    3. Khan, Waqas & Walker, Shalika & Zeiler, Wim, 2022. "Improved solar photovoltaic energy generation forecast using deep learning-based ensemble stacking approach," Energy, Elsevier, vol. 240(C).
    4. Lu, Yunbo & Wang, Lunche & Zhu, Canming & Zou, Ling & Zhang, Ming & Feng, Lan & Cao, Qian, 2023. "Predicting surface solar radiation using a hybrid radiative Transfer–Machine learning model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    5. Elianne Mora & Jenny Cifuentes & Geovanny Marulanda, 2021. "Short-Term Forecasting of Wind Energy: A Comparison of Deep Learning Frameworks," Energies, MDPI, vol. 14(23), pages 1-26, November.
    6. Nourani, Vahid & Sharghi, Elnaz & Behfar, Nazanin & Zhang, Yongqiang, 2022. "Multi-step-ahead solar irradiance modeling employing multi-frequency deep learning models and climatic data," Applied Energy, Elsevier, vol. 315(C).
    7. Pesantez, Jorge E. & Li, Binbin & Lee, Christopher & Zhao, Zhizhen & Butala, Mark & Stillwell, Ashlynn S., 2023. "A Comparison Study of Predictive Models for Electricity Demand in a Diverse Urban Environment," Energy, Elsevier, vol. 283(C).
    8. Hongchao Zhang & Tengteng Zhu, 2022. "Stacking Model for Photovoltaic-Power-Generation Prediction," Sustainability, MDPI, vol. 14(9), pages 1-16, May.
    9. Gupta, Priya & Singh, Rhythm, 2023. "Combining simple and less time complex ML models with multivariate empirical mode decomposition to obtain accurate GHI forecast," Energy, Elsevier, vol. 263(PC).
    10. Wang, Xiaoyang & Sun, Yunlin & Luo, Duo & Peng, Jinqing, 2022. "Comparative study of machine learning approaches for predicting short-term photovoltaic power output based on weather type classification," Energy, Elsevier, vol. 240(C).
    11. Cabello-López, Tomás & Carranza-García, Manuel & Riquelme, José C. & García-Gutiérrez, Jorge, 2023. "Forecasting solar energy production in Spain: A comparison of univariate and multivariate models at the national level," Applied Energy, Elsevier, vol. 350(C).
    12. Mirza, Adeel Feroz & Mansoor, Majad & Usman, Muhammad & Ling, Qiang, 2023. "A comprehensive approach for PV wind forecasting by using a hyperparameter tuned GCVCNN-MRNN deep learning model," Energy, Elsevier, vol. 283(C).
    13. Fjelkestam Frederiksen, Cornelia A. & Cai, Zuansi, 2022. "Novel machine learning approach for solar photovoltaic energy output forecast using extra-terrestrial solar irradiance," Applied Energy, Elsevier, vol. 306(PB).
    14. Tang, Qinghu & Guo, Hongye & Zheng, Kedi & Chen, Qixin, 2024. "Forecasting individual bids in real electricity markets through machine learning framework," Applied Energy, Elsevier, vol. 363(C).
    15. Mohammad Ehteram & Ali Najah Ahmed & Chow Ming Fai & Haitham Abdulmohsin Afan & Ahmed El-Shafie, 2019. "Accuracy Enhancement for Zone Mapping of a Solar Radiation Forecasting Based Multi-Objective Model for Better Management of the Generation of Renewable Energy," Energies, MDPI, vol. 12(14), pages 1-26, July.
    16. Xing Zhang & Zhuoqun Wei, 2019. "A Hybrid Model Based on Principal Component Analysis, Wavelet Transform, and Extreme Learning Machine Optimized by Bat Algorithm for Daily Solar Radiation Forecasting," Sustainability, MDPI, vol. 11(15), pages 1-20, July.
    17. Yagli, Gokhan Mert & Yang, Dazhi & Srinivasan, Dipti, 2019. "Automatic hourly solar forecasting using machine learning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 487-498.
    18. Khan, Zulfiqar Ahmad & Khan, Shabbir Ahmad & Hussain, Tanveer & Baik, Sung Wook, 2024. "DSPM: Dual sequence prediction model for efficient energy management in micro-grid," Applied Energy, Elsevier, vol. 356(C).
    19. Lu, Renzhi & Bai, Ruichang & Ding, Yuemin & Wei, Min & Jiang, Junhui & Sun, Mingyang & Xiao, Feng & Zhang, Hai-Tao, 2021. "A hybrid deep learning-based online energy management scheme for industrial microgrid," Applied Energy, Elsevier, vol. 304(C).
    20. Natei Ermias Benti & Mesfin Diro Chaka & Addisu Gezahegn Semie, 2023. "Forecasting Renewable Energy Generation with Machine Learning and Deep Learning: Current Advances and Future Prospects," Sustainability, MDPI, vol. 15(9), pages 1-33, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:17:p:4263-:d:1464355. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.