A revolutionary neural network architecture with interpretability and flexibility based on Kolmogorov–Arnold for solar radiation and temperature forecasting
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2024.124844
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Cabello-López, Tomás & Carranza-García, Manuel & Riquelme, José C. & García-Gutiérrez, Jorge, 2023. "Forecasting solar energy production in Spain: A comparison of univariate and multivariate models at the national level," Applied Energy, Elsevier, vol. 350(C).
- Spandagos, Constantinos & Ng, Tze Ling, 2017. "Equivalent full-load hours for assessing climate change impact on building cooling and heating energy consumption in large Asian cities," Applied Energy, Elsevier, vol. 189(C), pages 352-368.
- Gao, Yuan & Matsunami, Yuki & Miyata, Shohei & Akashi, Yasunori, 2022. "Operational optimization for off-grid renewable building energy system using deep reinforcement learning," Applied Energy, Elsevier, vol. 325(C).
- Huang, Lin & Song, Zihao & Dong, Qichang & Song, Ye & Zhao, Xiaoqing & Qi, Jiacheng & Shi, Long, 2024. "Surface temperature and power generation efficiency of PV arrays with various row spacings: A full-scale outdoor experimental study," Applied Energy, Elsevier, vol. 367(C).
- Kim, Donghun & Wang, Zhe & Brugger, James & Blum, David & Wetter, Michael & Hong, Tianzhen & Piette, Mary Ann, 2022. "Site demonstration and performance evaluation of MPC for a large chiller plant with TES for renewable energy integration and grid decarbonization," Applied Energy, Elsevier, vol. 321(C).
- Song, Zhe & Cao, Sunliang & Yang, Hongxing, 2024. "An interpretable framework for modeling global solar radiation using tree-based ensemble machine learning and Shapley additive explanations methods," Applied Energy, Elsevier, vol. 364(C).
- Gao, Yuan & Hu, Zehuan & Shi, Shanrui & Chen, Wei-An & Liu, Mingzhe, 2024. "Adversarial discriminative domain adaptation for solar radiation prediction: A cross-regional study for zero-label transfer learning in Japan," Applied Energy, Elsevier, vol. 359(C).
- Das, Utpal Kumar & Tey, Kok Soon & Seyedmahmoudian, Mehdi & Mekhilef, Saad & Idris, Moh Yamani Idna & Van Deventer, Willem & Horan, Bend & Stojcevski, Alex, 2018. "Forecasting of photovoltaic power generation and model optimization: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 912-928.
- Zhigao Zhou & Aiwen Lin & Lijie He & Lunche Wang, 2022. "Evaluation of Various Tree-Based Ensemble Models for Estimating Solar Energy Resource Potential in Different Climatic Zones of China," Energies, MDPI, vol. 15(9), pages 1-23, May.
- Gao, Yuan & Miyata, Shohei & Akashi, Yasunori, 2022. "Interpretable deep learning models for hourly solar radiation prediction based on graph neural network and attention," Applied Energy, Elsevier, vol. 321(C).
- Gao, Yuan & Miyata, Shohei & Akashi, Yasunori, 2022. "Multi-step solar irradiation prediction based on weather forecast and generative deep learning model," Renewable Energy, Elsevier, vol. 188(C), pages 637-650.
- Erdogan, Sinan & Pata, Ugur Korkut & Solarin, Sakiru Adebola, 2023. "Towards carbon-neutral world: The effect of renewable energy investments and technologies in G7 countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 186(C).
- Ruan, Zhaohui & Sun, Weiwei & Yuan, Yuan & Tan, Heping, 2023. "Accurately forecasting solar radiation distribution at both spatial and temporal dimensions simultaneously with fully-convolutional deep neural network model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
- Guosheng Duan & Lifeng Wu & Fa Liu & Yicheng Wang & Shaofei Wu, 2022. "Improvement in Solar-Radiation Forecasting Based on Evolutionary KNEA Method and Numerical Weather Prediction," Sustainability, MDPI, vol. 14(11), pages 1-20, June.
- Mayer, Martin János & Gróf, Gyula, 2021. "Extensive comparison of physical models for photovoltaic power forecasting," Applied Energy, Elsevier, vol. 283(C).
- Liu, Fa & Wang, Xunming & Sun, Fubao & Wang, Hong, 2022. "Correct and remap solar radiation and photovoltaic power in China based on machine learning models," Applied Energy, Elsevier, vol. 312(C).
- Meenal, R. & Selvakumar, A. Immanuel, 2018. "Assessment of SVM, empirical and ANN based solar radiation prediction models with most influencing input parameters," Renewable Energy, Elsevier, vol. 121(C), pages 324-343.
- Ajith, Meenu & Martínez-Ramón, Manel, 2021. "Deep learning based solar radiation micro forecast by fusion of infrared cloud images and radiation data," Applied Energy, Elsevier, vol. 294(C).
- Qin, Jun & Jiang, Hou & Lu, Ning & Yao, Ling & Zhou, Chenghu, 2022. "Enhancing solar PV output forecast by integrating ground and satellite observations with deep learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
- Bellido-Jiménez, Juan Antonio & Estévez Gualda, Javier & García-Marín, Amanda Penélope, 2021. "Assessing new intra-daily temperature-based machine learning models to outperform solar radiation predictions in different conditions," Applied Energy, Elsevier, vol. 298(C).
- Maghami, Mohammad Reza & Hizam, Hashim & Gomes, Chandima & Radzi, Mohd Amran & Rezadad, Mohammad Ismael & Hajighorbani, Shahrooz, 2016. "Power loss due to soiling on solar panel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1307-1316.
- Yin, Wansi & Han, Yutong & Zhou, Hai & Ma, Ming & Li, Li & Zhu, Honglu, 2020. "A novel non-iterative correction method for short-term photovoltaic power forecasting," Renewable Energy, Elsevier, vol. 159(C), pages 23-32.
- Ghimire, Sujan & Deo, Ravinesh C. & Casillas-Pérez, David & Salcedo-Sanz, Sancho, 2022. "Boosting solar radiation predictions with global climate models, observational predictors and hybrid deep-machine learning algorithms," Applied Energy, Elsevier, vol. 316(C).
- Han, Shuang & Qiao, Yan-hui & Yan, Jie & Liu, Yong-qian & Li, Li & Wang, Zheng, 2019. "Mid-to-long term wind and photovoltaic power generation prediction based on copula function and long short term memory network," Applied Energy, Elsevier, vol. 239(C), pages 181-191.
- Ferbar Tratar, Liljana & Strmčnik, Ervin, 2016. "The comparison of Holt–Winters method and Multiple regression method: A case study," Energy, Elsevier, vol. 109(C), pages 266-276.
- Shao, Changkun & Yang, Kun & Tang, Wenjun & He, Yanyi & Jiang, Yaozhi & Lu, Hui & Fu, Haohuan & Zheng, Juepeng, 2022. "Convolutional neural network-based homogenization for constructing a long-term global surface solar radiation dataset," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
- Hu, Zehuan & Gao, Yuan & Ji, Siyu & Mae, Masayuki & Imaizumi, Taiji, 2024. "Improved multistep ahead photovoltaic power prediction model based on LSTM and self-attention with weather forecast data," Applied Energy, Elsevier, vol. 359(C).
- Choi, Kwangwon & Park, Semi & Joe, Jaewan & Kim, Seon-In & Jo, Jae-Hun & Kim, Eui-Jong & Cho, Young-Hum, 2023. "Review of infiltration and airflow models in building energy simulations for providing guidelines to building energy modelers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 181(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Gao, Yuan & Hu, Zehuan & Shi, Shanrui & Chen, Wei-An & Liu, Mingzhe, 2024. "Adversarial discriminative domain adaptation for solar radiation prediction: A cross-regional study for zero-label transfer learning in Japan," Applied Energy, Elsevier, vol. 359(C).
- Gao, Yuan & Hu, Zehuan & Chen, Wei-An & Liu, Mingzhe, 2024. "Solutions to the insufficiency of label data in renewable energy forecasting: A comparative and integrative analysis of domain adaptation and fine-tuning," Energy, Elsevier, vol. 302(C).
- Hu, Zehuan & Gao, Yuan & Ji, Siyu & Mae, Masayuki & Imaizumi, Taiji, 2024. "Improved multistep ahead photovoltaic power prediction model based on LSTM and self-attention with weather forecast data," Applied Energy, Elsevier, vol. 359(C).
- Gu, Bo & Shen, Huiqiang & Lei, Xiaohui & Hu, Hao & Liu, Xinyu, 2021. "Forecasting and uncertainty analysis of day-ahead photovoltaic power using a novel forecasting method," Applied Energy, Elsevier, vol. 299(C).
- Li, Fengyun & Zheng, Haofeng & Li, Xingmei, 2022. "A novel hybrid model for multi-step ahead photovoltaic power prediction based on conditional time series generative adversarial networks," Renewable Energy, Elsevier, vol. 199(C), pages 560-586.
- Yu, Min & Niu, Dongxiao & Wang, Keke & Du, Ruoyun & Yu, Xiaoyu & Sun, Lijie & Wang, Feiran, 2023. "Short-term photovoltaic power point-interval forecasting based on double-layer decomposition and WOA-BiLSTM-Attention and considering weather classification," Energy, Elsevier, vol. 275(C).
- Xu, Fang Yuan & Tang, Rui Xin & Xu, Si Bin & Fan, Yi Liang & Zhou, Ya & Zhang, Hao Tian, 2021. "Neural network-based photovoltaic generation capacity prediction system with benefit-oriented modification," Energy, Elsevier, vol. 223(C).
- Song, Zhe & Cao, Sunliang & Yang, Hongxing, 2023. "Assessment of solar radiation resource and photovoltaic power potential across China based on optimized interpretable machine learning model and GIS-based approaches," Applied Energy, Elsevier, vol. 339(C).
- Ladislav Zjavka, 2021. "Photovoltaic Energy All-Day and Intra-Day Forecasting Using Node by Node Developed Polynomial Networks Forming PDE Models Based on the L-Transformation," Energies, MDPI, vol. 14(22), pages 1-14, November.
- Dong, Shiqian & Di, Yanqiang & Gao, Yafeng & Long, He & Fan, Zhixuan & Guan, Jingxuan & Han, Lijun & Wang, Yingming, 2025. "Multiple operational strategies investigations of the PV/T collectors based on 3 days ahead hourly radiation prediction," Applied Energy, Elsevier, vol. 377(PA).
- Liu, Jingxuan & Zang, Haixiang & Ding, Tao & Cheng, Lilin & Wei, Zhinong & Sun, Guoqiang, 2023. "Harvesting spatiotemporal correlation from sky image sequence to improve ultra-short-term solar irradiance forecasting," Renewable Energy, Elsevier, vol. 209(C), pages 619-631.
- Lu, Yunbo & Wang, Lunche & Zhu, Canming & Zou, Ling & Zhang, Ming & Feng, Lan & Cao, Qian, 2023. "Predicting surface solar radiation using a hybrid radiative Transfer–Machine learning model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
- Liu, Mingzhe & Guo, Mingyue & Fu, Yangyang & O’Neill, Zheng & Gao, Yuan, 2024. "Expert-guided imitation learning for energy management: Evaluating GAIL’s performance in building control applications," Applied Energy, Elsevier, vol. 372(C).
- Yang, Yanru & Liu, Yu & Zhang, Yihang & Shu, Shaolong & Zheng, Junsheng, 2025. "DEST-GNN: A double-explored spatio-temporal graph neural network for multi-site intra-hour PV power forecasting," Applied Energy, Elsevier, vol. 378(PA).
- Anderson Mitterhofer Iung & Fernando Luiz Cyrino Oliveira & André Luís Marques Marcato, 2023. "A Review on Modeling Variable Renewable Energy: Complementarity and Spatial–Temporal Dependence," Energies, MDPI, vol. 16(3), pages 1-24, January.
- Hu, Yusha & Man, Yi, 2023. "Energy consumption and carbon emissions forecasting for industrial processes: Status, challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
- Gong, Bin & An, Aimin & Shi, Yaoke & Guan, Haijiao & Jia, Wenchao & Yang, Fazhi, 2024. "An interpretable hybrid spatiotemporal fusion method for ultra-short-term photovoltaic power prediction," Energy, Elsevier, vol. 308(C).
- Hong Wu & Haipeng Liu & Huaiping Jin & Yanping He, 2024. "Ultra-Short-Term Photovoltaic Power Prediction by NRGA-BiLSTM Considering Seasonality and Periodicity of Data," Energies, MDPI, vol. 17(18), pages 1-19, September.
- Cui, Shuhui & Lyu, Shouping & Ma, Yongzhi & Wang, Kai, 2024. "Improved informer PV power short-term prediction model based on weather typing and AHA-VMD-MPE," Energy, Elsevier, vol. 307(C).
- Tang, Yugui & Yang, Kuo & Zhang, Shujing & Zhang, Zhen, 2022. "Photovoltaic power forecasting: A hybrid deep learning model incorporating transfer learning strategy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
More about this item
Keywords
Interpretable neural network; Kolmogorov–Arnold network; Time series forecasting; Solar radiation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:378:y:2025:i:pa:s030626192402227x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.