IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i4p1633-d492704.html
   My bibliography  Save this article

Prediction Interval Estimation Methods for Artificial Neural Network (ANN)-Based Modeling of the Hydro-Climatic Processes, a Review

Author

Listed:
  • Vahid Nourani

    (Center of Excellence in Hydroinformatics and Faculty of Civil Engineering, University of Tabriz, Tabriz 51368, Iran
    Faculty of Civil and Environmental Engineering, Near East University, N. Cyprus, via Mersin 10, Nicosia 99138, Turkey)

  • Nardin Jabbarian Paknezhad

    (Center of Excellence in Hydroinformatics and Faculty of Civil Engineering, University of Tabriz, Tabriz 51368, Iran)

  • Hitoshi Tanaka

    (Department of Civil Engineering, Tohoku University, 6-6-06 Aoba, Sendai 980-8579, Japan)

Abstract

Despite the wide applications of artificial neural networks (ANNs) in modeling hydro-climatic processes, quantification of the ANNs’ performance is a significant matter. Sustainable management of water resources requires information about the amount of uncertainty involved in the modeling results, which is a guide for proper decision making. Therefore, in recent years, uncertainty analysis of ANN modeling has attracted noticeable attention. Prediction intervals (PIs) are one of the prevalent tools for uncertainty quantification. This review paper has focused on the different techniques of PI development in the field of hydrology and climatology modeling. The implementation of each method was discussed, and their pros and cons were investigated. In addition, some suggestions are provided for future studies. This review paper was prepared via PRISMA (preferred reporting items for systematic reviews and meta-analyses) methodology.

Suggested Citation

  • Vahid Nourani & Nardin Jabbarian Paknezhad & Hitoshi Tanaka, 2021. "Prediction Interval Estimation Methods for Artificial Neural Network (ANN)-Based Modeling of the Hydro-Climatic Processes, a Review," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:4:p:1633-:d:492704
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/4/1633/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/4/1633/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Junwei Ma & Xiaoxu Niu & Huiming Tang & Yankun Wang & Tao Wen & Junrong Zhang, 2020. "Displacement Prediction of a Complex Landslide in the Three Gorges Reservoir Area (China) Using a Hybrid Computational Intelligence Approach," Complexity, Hindawi, vol. 2020, pages 1-15, January.
    2. Xuesong Zhang & Kaiguang Zhao, 2012. "Bayesian Neural Networks for Uncertainty Analysis of Hydrologic Modeling: A Comparison of Two Schemes," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(8), pages 2365-2382, June.
    3. Xiao-Yun Chen & Kwok-Wing Chau, 2019. "Uncertainty Analysis on Hybrid Double Feedforward Neural Network Model for Sediment Load Estimation with LUBE Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(10), pages 3563-3577, August.
    4. Zio, Enrico & Aven, Terje, 2011. "Uncertainties in smart grids behavior and modeling: What are the risks and vulnerabilities? How to analyze them?," Energy Policy, Elsevier, vol. 39(10), pages 6308-6320, October.
    5. Snyder, Hannah, 2019. "Literature review as a research methodology: An overview and guidelines," Journal of Business Research, Elsevier, vol. 104(C), pages 333-339.
    6. Chatfield, Chris, 1993. "Calculating Interval Forecasts: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(2), pages 143-144, April.
    7. Akram Seifi & Mohammad Ehteram & Vijay P. Singh & Amir Mosavi, 2020. "Modeling and Uncertainty Analysis of Groundwater Level Using Six Evolutionary Optimization Algorithms Hybridized with ANFIS, SVM, and ANN," Sustainability, MDPI, vol. 12(10), pages 1-42, May.
    8. Vahid Nourani & Mehdi Komasi & Akira Mano, 2009. "A Multivariate ANN-Wavelet Approach for Rainfall–Runoff Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(14), pages 2877-2894, November.
    9. Chatfield, Chris, 1993. "Calculating Interval Forecasts," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(2), pages 121-135, April.
    10. Hairong Zhang & Jianzhong Zhou & Lei Ye & Xiaofan Zeng & Yufan Chen, 2015. "Lower Upper Bound Estimation Method Considering Symmetry for Construction of Prediction Intervals in Flood Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(15), pages 5505-5519, December.
    11. Elnaz Sharghi & Vahid Nourani & Hessam Najafi & Amir Molajou, 2018. "Emotional ANN (EANN) and Wavelet-ANN (WANN) Approaches for Markovian and Seasonal Based Modeling of Rainfall-Runoff Process," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(10), pages 3441-3456, August.
    12. Sanjeet Kumar & Mukesh Tiwari & Chandranath Chatterjee & Ashok Mishra, 2015. "Reservoir Inflow Forecasting Using Ensemble Models Based on Neural Networks, Wavelet Analysis and Bootstrap Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(13), pages 4863-4883, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Han Chen & Ziqi Zhou & Han Li & Yizhao Wei & Jinhui (Jeanne) Huang & Hong Liang & Weimin Wang, 2023. "Evaluation the Performance of Three Types of Two-Source Evapotranspiration Models in Urban Woodland Areas," Sustainability, MDPI, vol. 15(12), pages 1-18, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Berrin Aytac & S. Wu, 2013. "Characterization of demand for short life-cycle technology products," Annals of Operations Research, Springer, vol. 203(1), pages 255-277, March.
    2. Lee, Yun Shin & Scholtes, Stefan, 2014. "Empirical prediction intervals revisited," International Journal of Forecasting, Elsevier, vol. 30(2), pages 217-234.
    3. repec:lan:wpaper:470 is not listed on IDEAS
    4. Charles, Amelie & Darne, Olivier & Kim, Jae, 2016. "Stock Return Predictability: Evaluation based on Prediction Intervals," MPRA Paper 70143, University Library of Munich, Germany.
    5. Dhaoui, Iyad, 2015. "Climat des Affaires et Compétitivité de l’Entreprise Tunisienne Après la Révolution : Analyses et Perspectives [Business Climate and Competitiveness of the Tunisian Enterprise After the Revolution:," MPRA Paper 87331, University Library of Munich, Germany.
    6. Pascual, Lorenzo & Romo, Juan & Ruiz, Esther, 2005. "Bootstrap prediction intervals for power-transformed time series," International Journal of Forecasting, Elsevier, vol. 21(2), pages 219-235.
    7. Li, Yushu & Andersson, Jonas, 2014. "A Likelihood Ratio and Markov Chain Based Method to Evaluate Density Forecasting," Discussion Papers 2014/12, Norwegian School of Economics, Department of Business and Management Science.
    8. Klaus Abberger, 2006. "Kernel smoothed prediction intervals for ARMA models," Statistical Papers, Springer, vol. 47(1), pages 1-15, January.
    9. Roberto Buizza & James W. Taylor, 2004. "A comparison of temperature density forecasts from GARCH and atmospheric models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(5), pages 337-355.
    10. Yushu Li & Jonas Andersson, 2020. "A likelihood ratio and Markov chain‐based method to evaluate density forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(1), pages 47-55, January.
    11. James W. Taylor & Derek W. Bunn, 1999. "A Quantile Regression Approach to Generating Prediction Intervals," Management Science, INFORMS, vol. 45(2), pages 225-237, February.
    12. Wolfgang Nierhaus, 2019. "Wirtschaftskonjunktur 2018: Prognose und Wirklichkeit," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 72(03), pages 22-29, February.
    13. Melard, G. & Pasteels, J. -M., 2000. "Automatic ARIMA modeling including interventions, using time series expert software," International Journal of Forecasting, Elsevier, vol. 16(4), pages 497-508.
    14. Harvey, David I. & Newbold, Paul, 2003. "The non-normality of some macroeconomic forecast errors," International Journal of Forecasting, Elsevier, vol. 19(4), pages 635-653.
    15. Mirakyan, Atom & Meyer-Renschhausen, Martin & Koch, Andreas, 2017. "Composite forecasting approach, application for next-day electricity price forecasting," Energy Economics, Elsevier, vol. 66(C), pages 228-237.
    16. Karamaziotis, Panagiotis I. & Raptis, Achilleas & Nikolopoulos, Konstantinos & Litsiou, Konstantia & Assimakopoulos, Vassilis, 2020. "An empirical investigation of water consumption forecasting methods," International Journal of Forecasting, Elsevier, vol. 36(2), pages 588-606.
    17. Dick van Dijk & Philip Hans Franses & Michael P. Clements & Jeremy Smith, 2003. "On SETAR non-linearity and forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 22(5), pages 359-375.
    18. Dhaoui, Elwardi, 2015. "Climat des Affaires et Compétitivité de l’Entreprise Tunisienne Après la Révolution : Analyses et Perspectives [Business Climate and Competitiveness of the Tunisian Enterprise After the Revolution:," MPRA Paper 70675, University Library of Munich, Germany.
    19. Diego Fresoli, 2022. "Bootstrap VAR forecasts: The effect of model uncertainties," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 279-293, March.
    20. Ashkan Zarnani & Soheila Karimi & Petr Musilek, 2019. "Quantile Regression and Clustering Models of Prediction Intervals for Weather Forecasts: A Comparative Study," Forecasting, MDPI, vol. 1(1), pages 1-20, October.
    21. Chen, Yi-Hsuan & Tu, Anthony H., 2013. "Estimating hedged portfolio value-at-risk using the conditional copula: An illustration of model risk," International Review of Economics & Finance, Elsevier, vol. 27(C), pages 514-528.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:4:p:1633-:d:492704. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.