IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i7p1706-d341214.html
   My bibliography  Save this article

A Bi-Layer Multi-Objective Techno-Economical Optimization Model for Optimal Integration of Distributed Energy Resources into Smart/Micro Grids

Author

Listed:
  • Mostafa Rezaeimozafar

    (Department of Electrical Engineering, Hamedan Branch, Islamic Azad University, Hamedan 65181-15743, Iran)

  • Mohsen Eskandari

    (Faculty of Engineering and Information Technology, University of Technology Sydney, NSW 2007, Australia)

  • Mohammad Hadi Amini

    (School of Computing and Information Science, College of Engineering and Computing, Florida International University, Miami, FL 33199, USA)

  • Mohammad Hasan Moradi

    (Department of Electrical Engineering, Faculty of Engineering, Bu-Ali Sina University, Hamedan 65167-38695, Iran)

  • Pierluigi Siano

    (Department of Management and Innovation Systems, University of Salerno, 84084 Fisciano (SA), Italy)

Abstract

The energy management system is executed in microgrids for optimal integration of distributed energy resources (DERs) into the power distribution grids. To this end, various strategies have been more focused on cost reduction, whereas effectively both economic and technical indices/factors have to be considered simultaneously. Therefore, in this paper, a two-layer optimization model is proposed to minimize the operation costs, voltage fluctuations, and power losses of smart microgrids. In the outer-layer, the size and capacity of DERs including renewable energy sources (RES), electric vehicles (EV) charging stations and energy storage systems (ESS), are obtained simultaneously. The inner-layer corresponds to the scheduled operation of EVs and ESSs using an integrated coordination model (ICM). The ICM is a fuzzy interface that has been adopted to address the multi-objectivity of the cost function developed based on hourly demand response, state of charges of EVs and ESS, and electricity price. Demand response is implemented in the ICM to investigate the effect of time-of-use electricity prices on optimal energy management. To solve the optimization problem and load-flow equations, hybrid genetic algorithm (GA)-particle swarm optimization (PSO) and backward-forward sweep algorithms are deployed, respectively. One-day simulation results confirm that the proposed model can reduce the power loss, voltage fluctuations and electricity supply cost by 51%, 40.77%, and 55.21%, respectively, which can considerably improve power system stability and energy efficiency.

Suggested Citation

  • Mostafa Rezaeimozafar & Mohsen Eskandari & Mohammad Hadi Amini & Mohammad Hasan Moradi & Pierluigi Siano, 2020. "A Bi-Layer Multi-Objective Techno-Economical Optimization Model for Optimal Integration of Distributed Energy Resources into Smart/Micro Grids," Energies, MDPI, vol. 13(7), pages 1-25, April.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:7:p:1706-:d:341214
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/7/1706/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/7/1706/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Songli Fan & Qian Ai & Longjian Piao, 2018. "Hierarchical Energy Management of Microgrids including Storage and Demand Response," Energies, MDPI, vol. 11(5), pages 1-23, May.
    2. Jacob, Ammu Susanna & Banerjee, Rangan & Ghosh, Prakash C., 2018. "Sizing of hybrid energy storage system for a PV based microgrid through design space approach," Applied Energy, Elsevier, vol. 212(C), pages 640-653.
    3. Abedini, Mohammad & Moradi, Mohammad H. & Hosseinian, S. Mahdi, 2016. "Optimal management of microgrids including renewable energy scources using GPSO-GM algorithm," Renewable Energy, Elsevier, vol. 90(C), pages 430-439.
    4. Shafie-khah, M. & Heydarian-Forushani, E. & Golshan, M.E.H. & Siano, P. & Moghaddam, M.P. & Sheikh-El-Eslami, M.K. & Catalão, J.P.S., 2016. "Optimal trading of plug-in electric vehicle aggregation agents in a market environment for sustainability," Applied Energy, Elsevier, vol. 162(C), pages 601-612.
    5. Moradi, Hadis & Esfahanian, Mahdi & Abtahi, Amir & Zilouchian, Ali, 2018. "Optimization and energy management of a standalone hybrid microgrid in the presence of battery storage system," Energy, Elsevier, vol. 147(C), pages 226-238.
    6. Kayal, Partha & Chanda, C.K., 2015. "Optimal mix of solar and wind distributed generations considering performance improvement of electrical distribution network," Renewable Energy, Elsevier, vol. 75(C), pages 173-186.
    7. Zubair Khalid & Ghulam Abbas & Muhammad Awais & Thamer Alquthami & Muhammad Babar Rasheed, 2020. "A Novel Load Scheduling Mechanism Using Artificial Neural Network Based Customer Profiles in Smart Grid," Energies, MDPI, vol. 13(5), pages 1-23, February.
    8. Rahbari, Omid & Vafaeipour, Majid & Omar, Noshin & Rosen, Marc A. & Hegazy, Omar & Timmermans, Jean-Marc & Heibati, Seyedmohammadreza & Bossche, Peter Van Den, 2017. "An optimal versatile control approach for plug-in electric vehicles to integrate renewable energy sources and smart grids," Energy, Elsevier, vol. 134(C), pages 1053-1067.
    9. Urooj Asgher & Muhammad Babar Rasheed & Ameena Saad Al-Sumaiti & Atiq Ur-Rahman & Ihsan Ali & Amer Alzaidi & Abdullah Alamri, 2018. "Smart Energy Optimization Using Heuristic Algorithm in Smart Grid with Integration of Solar Energy Sources," Energies, MDPI, vol. 11(12), pages 1-26, December.
    10. M. Hadi Amini & Orkun Karabasoglu, 2018. "Optimal Operation of Interdependent Power Systems and Electrified Transportation Networks," Energies, MDPI, vol. 11(1), pages 1-25, January.
    11. Aalami, H.A. & Moghaddam, M. Parsa & Yousefi, G.R., 2010. "Demand response modeling considering Interruptible/Curtailable loads and capacity market programs," Applied Energy, Elsevier, vol. 87(1), pages 243-250, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wagner, Lukas Peter & Reinpold, Lasse Matthias & Kilthau, Maximilian & Fay, Alexander, 2023. "A systematic review of modeling approaches for flexible energy resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aktas, Ahmet & Erhan, Koray & Özdemir, Sule & Özdemir, Engin, 2018. "Dynamic energy management for photovoltaic power system including hybrid energy storage in smart grid applications," Energy, Elsevier, vol. 162(C), pages 72-82.
    2. Hajibandeh, Neda & Shafie-khah, Miadreza & Osório, Gerardo J. & Aghaei, Jamshid & Catalão, João P.S., 2018. "A heuristic multi-objective multi-criteria demand response planning in a system with high penetration of wind power generators," Applied Energy, Elsevier, vol. 212(C), pages 721-732.
    3. Jithendranath, J. & Das, Debapriya & Guerrero, Josep M., 2021. "Probabilistic optimal power flow in islanded microgrids with load, wind and solar uncertainties including intermittent generation spatial correlation," Energy, Elsevier, vol. 222(C).
    4. Yiqi Dong & Zuoji Dong, 2023. "Bibliometric Analysis of Game Theory on Energy and Natural Resource," Sustainability, MDPI, vol. 15(2), pages 1-19, January.
    5. Nwulu, Nnamdi I. & Xia, Xiaohua, 2015. "Implementing a model predictive control strategy on the dynamic economic emission dispatch problem with game theory based demand response programs," Energy, Elsevier, vol. 91(C), pages 404-419.
    6. Haddadian, Hossein & Noroozian, Reza, 2017. "Optimal operation of active distribution systems based on microgrid structure," Renewable Energy, Elsevier, vol. 104(C), pages 197-210.
    7. Shafqat Jawad & Junyong Liu, 2020. "Electrical Vehicle Charging Services Planning and Operation with Interdependent Power Networks and Transportation Networks: A Review of the Current Scenario and Future Trends," Energies, MDPI, vol. 13(13), pages 1-24, July.
    8. Razavi, Seyed-Ehsan & Rahimi, Ehsan & Javadi, Mohammad Sadegh & Nezhad, Ali Esmaeel & Lotfi, Mohamed & Shafie-khah, Miadreza & Catalão, João P.S., 2019. "Impact of distributed generation on protection and voltage regulation of distribution systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 157-167.
    9. Meyabadi, A. Fattahi & Deihimi, M.H., 2017. "A review of demand-side management: Reconsidering theoretical framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 367-379.
    10. Ahmad Alzahrani & Senthil Kumar Ramu & Gunapriya Devarajan & Indragandhi Vairavasundaram & Subramaniyaswamy Vairavasundaram, 2022. "A Review on Hydrogen-Based Hybrid Microgrid System: Topologies for Hydrogen Energy Storage, Integration, and Energy Management with Solar and Wind Energy," Energies, MDPI, vol. 15(21), pages 1-32, October.
    11. Eissa, M.M., 2018. "First time real time incentive demand response program in smart grid with “i-Energy” management system with different resources," Applied Energy, Elsevier, vol. 212(C), pages 607-621.
    12. Abdul Conteh & Mohammed Elsayed Lotfy & Kiptoo Mark Kipngetich & Tomonobu Senjyu & Paras Mandal & Shantanu Chakraborty, 2019. "An Economic Analysis of Demand Side Management Considering Interruptible Load and Renewable Energy Integration: A Case Study of Freetown Sierra Leone," Sustainability, MDPI, vol. 11(10), pages 1-19, May.
    13. Jiao, P.H. & Chen, J.J. & Cai, X. & Wang, L.L. & Zhao, Y.L. & Zhang, X.H. & Chen, W.G., 2021. "Joint active and reactive for allocation of renewable energy and energy storage under uncertain coupling," Applied Energy, Elsevier, vol. 302(C).
    14. Hasankhani, Arezoo & Hakimi, Seyed Mehdi, 2021. "Stochastic energy management of smart microgrid with intermittent renewable energy resources in electricity market," Energy, Elsevier, vol. 219(C).
    15. Ceran, Bartosz, 2019. "The concept of use of PV/WT/FC hybrid power generation system for smoothing the energy profile of the consumer," Energy, Elsevier, vol. 167(C), pages 853-865.
    16. Du, Guodong & Zou, Yuan & Zhang, Xudong & Kong, Zehui & Wu, Jinlong & He, Dingbo, 2019. "Intelligent energy management for hybrid electric tracked vehicles using online reinforcement learning," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    17. Aghajani, Saemeh & Kalantar, Mohsen, 2017. "Optimal scheduling of distributed energy resources in smart grids: A complementarity approach," Energy, Elsevier, vol. 141(C), pages 2135-2144.
    18. Chitchai Srithapon & Prasanta Ghosh & Apirat Siritaratiwat & Rongrit Chatthaworn, 2020. "Optimization of Electric Vehicle Charging Scheduling in Urban Village Networks Considering Energy Arbitrage and Distribution Cost," Energies, MDPI, vol. 13(2), pages 1-20, January.
    19. Lei Chen & Xiude Tu & Hongkun Chen & Jun Yang & Yayi Wu & Xin Shu & Li Ren, 2016. "Technical Evaluation of Superconducting Fault Current Limiters Used in a Micro-Grid by Considering the Fault Characteristics of Distributed Generation, Energy Storage and Power Loads," Energies, MDPI, vol. 9(10), pages 1-21, September.
    20. Pereira, Géssica Michelle dos Santos & Weigert, Gabriela Rosalee & Macedo, Pablo Lopes & Silva, Kiane Alves e & Segura Salas, Cresencio Silvio & Gonçalves, Antônio Maurício de Matos & Nascimento, Hebe, 2022. "Quasi-dynamic operation and maintenance plan for photovoltaic systems in remote areas: The framework of Pantanal-MS," Renewable Energy, Elsevier, vol. 181(C), pages 404-416.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:7:p:1706-:d:341214. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.