IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i12p4206-d833569.html
   My bibliography  Save this article

Reduction of Power Consumption and CO 2 Emissions as a Result of Putting into Service High-Speed Trains: Polish Case

Author

Listed:
  • Agata Pomykala

    (Railway Research Institute, 50 Chlopickiego Street, 04-275 Warsaw, Poland)

  • Adam Szelag

    (Electric Traction Division, Power Engineering Institute, Warsaw University of Technology, Koszykowa Street 75, 00-662 Warsaw, Poland)

Abstract

This article presents the results of analyses of energy efficiency and environmental outcomes of putting into operation high-speed trains—first of that kind in Poland—in 2014 on upgraded 3 kV DC lines. Comparative analyses of these trains in Poland have not been carried out so far and provide a new approach to assessing the feasibility of their adoption and, in a broader context, the advisability of replacing conventional with high-speed rail transport. The analysis supports the advantages of high-speed railway (HSR) and the need to develop a network of high-speed connections using energy-efficient trains in Poland. Putting these trains into service reduced CO 2 emissions, which is significant in Poland as a country relying heavily on power generated in coal power plants and complies with the assumptions of the sustainable development policies and EU Green Deal. The outcomes of our analysis can be used for transportation planning to mitigate climate change and the presented approach provides a method of quantification of environmental impacts of HS trains.

Suggested Citation

  • Agata Pomykala & Adam Szelag, 2022. "Reduction of Power Consumption and CO 2 Emissions as a Result of Putting into Service High-Speed Trains: Polish Case," Energies, MDPI, vol. 15(12), pages 1-24, June.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:12:p:4206-:d:833569
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/12/4206/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/12/4206/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hammad Alnuman & Daniel Gladwin & Martin Foster, 2018. "Electrical Modelling of a DC Railway System with Multiple Trains," Energies, MDPI, vol. 11(11), pages 1-20, November.
    2. Malin Song & Nan Wu & Kaiya Wu, 2014. "Energy Consumption and Energy Efficiency of the Transportation Sector in Shanghai," Sustainability, MDPI, vol. 6(2), pages 1-16, February.
    3. Zhipeng Tang & Ziao Mei & Jialing Zou, 2021. "Does the Opening of High-Speed Railway Lines Reduce the Carbon Intensity of China’s Resource-Based Cities?," Energies, MDPI, vol. 14(15), pages 1-18, July.
    4. Petru Valentin Radu & Adam Szelag & Marcin Steczek, 2019. "On-Board Energy Storage Devices with Supercapacitors for Metro Trains—Case Study Analysis of Application Effectiveness," Energies, MDPI, vol. 12(7), pages 1-22, April.
    5. Petru Valentin Radu & Miroslaw Lewandowski & Adam Szelag, 2020. "On-Board and Wayside Energy Storage Devices Applications in Urban Transport Systems—Case Study Analysis for Power Applications," Energies, MDPI, vol. 13(8), pages 1-29, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiangjing Zeng & Yong Ma & Jie Ren & Biao He, 2022. "Analysis of the Green Development Effects of High-Speed Railways Based on Eco-Efficiency: Evidence from Multisource Remote Sensing and Statistical Data of Urban Agglomerations in the Middle Reaches of," IJERPH, MDPI, vol. 19(24), pages 1-20, December.
    2. Mantas Plienis & Tomas Deveikis & Audrius Jonaitis & Saulius Gudžius, 2023. "Design of IOT-Based Framework for Evaluation of Energy Efficiency in Power Transformers," Energies, MDPI, vol. 16(11), pages 1-15, May.
    3. Mihaela Popescu, 2022. "Energy Efficiency in Electric Transportation Systems," Energies, MDPI, vol. 15(21), pages 1-5, November.
    4. Adam Szeląg & Mladen Nikšić, 2023. "Advances in Electric Traction System—Special Issue," Energies, MDPI, vol. 16(3), pages 1-5, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Petru Valentin Radu & Miroslaw Lewandowski & Adam Szelag, 2020. "On-Board and Wayside Energy Storage Devices Applications in Urban Transport Systems—Case Study Analysis for Power Applications," Energies, MDPI, vol. 13(8), pages 1-29, April.
    2. Meishner, Fabian & Ünlübayir, Cem & Sauer, Dirk Uwe, 2023. "Model-based investigation of an uncontrolled LTO wayside energy storage system in a 750 V tram grid," Applied Energy, Elsevier, vol. 331(C).
    3. Petru Valentin Radu & Miroslaw Lewandowski & Adam Szelag & Marcin Steczek, 2022. "Short-Circuit Fault Current Modeling of a DC Light Rail System with a Wayside Energy Storage Device," Energies, MDPI, vol. 15(10), pages 1-24, May.
    4. Chunhua Xin & Xiufeng Lai, 2022. "Does the Environmental Information Disclosure Promote the High-Quality Development of China’s Resource-Based Cities?," Sustainability, MDPI, vol. 14(11), pages 1-26, May.
    5. Du, Minzhe & Wang, Bing & Zhang, Ning, 2018. "National research funding and energy efficiency: Evidence from the National Science Foundation of China," Energy Policy, Elsevier, vol. 120(C), pages 335-346.
    6. Marcin Steczek & Piotr Chudzik & Adam Szeląg, 2020. "Application of a Non-carrier-Based Modulation for Current Harmonics Spectrum Control during Regenerative Braking of the Electric Vehicle," Energies, MDPI, vol. 13(24), pages 1-21, December.
    7. Canca, David & Zarzo, Alejandro, 2017. "Design of energy-Efficient timetables in two-way railway rapid transit lines," Transportation Research Part B: Methodological, Elsevier, vol. 102(C), pages 142-161.
    8. Chen, Yu & Wang, Yuandi & Zhao, Changyi, 2023. "How do high-speed rails influence city carbon emissions?," Energy, Elsevier, vol. 265(C).
    9. Jefimowski, Włodzimierz & Szeląg, Adam & Steczek, Marcin & Nikitenko, Anatolii, 2020. "Vanadium redox flow battery parameters optimization in a transportation microgrid: A case study," Energy, Elsevier, vol. 195(C).
    10. Liu, Zhen & Diao, Ziyu & Lu, Yuan, 2024. "Can the opening of high-speed rail boost the reduction of air pollution and carbon emissions? Quasi-experimental evidence from China," Socio-Economic Planning Sciences, Elsevier, vol. 92(C).
    11. Efrain Mendez & Alexandro Ortiz & Pedro Ponce & Israel Macias & David Balderas & Arturo Molina, 2020. "Improved MPPT Algorithm for Photovoltaic Systems Based on the Earthquake Optimization Algorithm," Energies, MDPI, vol. 13(12), pages 1-24, June.
    12. Guang Yang & Feng Zhang & Cheng Gong & Shiwen Zhang, 2019. "Application of a Deep Deterministic Policy Gradient Algorithm for Energy-Aimed Timetable Rescheduling Problem," Energies, MDPI, vol. 12(18), pages 1-19, September.
    13. Natallia Pashkevich & Darek Haftor & Mikael Karlsson & Soumitra Chowdhury, 2019. "Sustainability through the Digitalization of Industrial Machines: Complementary Factors of Fuel Consumption and Productivity for Forklifts with Sensors," Sustainability, MDPI, vol. 11(23), pages 1-21, November.
    14. Aleksander Jakubowski & Leszek Jarzebowicz & Mikołaj Bartłomiejczyk & Jacek Skibicki & Slawomir Judek & Andrzej Wilk & Mateusz Płonka, 2021. "Modeling of Electrified Transportation Systems Featuring Multiple Vehicles and Complex Power Supply Layout," Energies, MDPI, vol. 14(24), pages 1-20, December.
    15. Marcin Szott & Marcin Jarnut & Jacek Kaniewski & Łukasz Pilimon & Szymon Wermiński, 2021. "Fault-Tolerant Control in a Peak-Power Reduction System of a Traction Substation with Multi-String Battery Energy Storage System," Energies, MDPI, vol. 14(15), pages 1-23, July.
    16. Elżbieta Szaruga & Bartosz Pilecki & Marta Sidorkiewicz, 2023. "The Impact of the COVID-19 Pandemic, Transport Accessibility, and Accommodation Accessibility on the Energy Intensity of Public Tourist Transport," Energies, MDPI, vol. 16(19), pages 1-27, October.
    17. Sahil Bhagat & Jacopo Bongiorno & Andrea Mariscotti, 2023. "Influence of Infrastructure and Operating Conditions on Energy Performance of DC Transit Systems," Energies, MDPI, vol. 16(10), pages 1-26, May.
    18. Joshua Ezekiel Rito & Neil Stephen Lopez & Jose Bienvenido Manuel Biona, 2021. "Modeling Traffic Flow, Energy Use, and Emissions Using Google Maps and Google Street View: The Case of EDSA, Philippines," Sustainability, MDPI, vol. 13(12), pages 1-18, June.
    19. Artur Kierzkowski & Szymon Haładyn, 2022. "Method for Reconfiguring Train Schedules Taking into Account the Global Reduction of Railway Energy Consumption," Energies, MDPI, vol. 15(5), pages 1-18, March.
    20. Heng Li & Jun Peng & Weirong Liu & Zhiwu Huang, 2015. "Stationary Charging Station Design for Sustainable Urban Rail Systems: A Case Study at Zhuzhou Electric Locomotive Co., China," Sustainability, MDPI, vol. 7(1), pages 1-17, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:12:p:4206-:d:833569. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.