IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i19p6206-d645728.html
   My bibliography  Save this article

Gathering Energy of the Stray Currents in Electrified Railways Environment for Power Supply

Author

Listed:
  • Grzegorz Wieczorek

    (Department of Electronics, Electrical Engineering and Microelectronics, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, 44-100 Gliwice, Poland)

  • Krzysztof Bernacki

    (Department of Electronics, Electrical Engineering and Microelectronics, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, 44-100 Gliwice, Poland)

  • Zbigniew Rymarski

    (Department of Electronics, Electrical Engineering and Microelectronics, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, 44-100 Gliwice, Poland)

  • Wojciech Oliwa

    (Department of Electronics, Electrical Engineering and Microelectronics, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, 44-100 Gliwice, Poland)

Abstract

The paper presents a new, unconventional energy harvesting (EH) method for supplying low-power devices on electrified railway lines that utilises stray currents and the non-zero potential of the rails to the ground. The EH device gathers the energy and stores it in batteries. It could even work in extremely unfavourable weather conditions and could be easily placed in almost any location. The presented real-life data show that the average available power is less than 250 mW and the average useful power is about 100 mW. This is enough to supply ultra-low power microcontrollers, which only occasionally use energy-consuming modules to perform measurements or communicate. The disadvantage of the EH method is the introduction of resistance between the rail and the earth, which increases stray currents and could increase the electrochemical corrosion of the rail. To reduce the impact of this resistance, a method for balancing the flowing charge is proposed. After balancing, the average of the flowing current is zero and electrochemical corrosion should be reduced. The proposed charge balancing algorithms could reduce the unbalanced charge to nearly zero at the expense of energy gathering efficiency, which decreases by 20–40%.

Suggested Citation

  • Grzegorz Wieczorek & Krzysztof Bernacki & Zbigniew Rymarski & Wojciech Oliwa, 2021. "Gathering Energy of the Stray Currents in Electrified Railways Environment for Power Supply," Energies, MDPI, vol. 14(19), pages 1-19, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6206-:d:645728
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/19/6206/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/19/6206/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tan, Ting & Yan, Zhimiao & Zou, Hongxiang & Ma, Kejing & Liu, Fengrui & Zhao, Linchuan & Peng, Zhike & Zhang, Wenming, 2019. "Renewable energy harvesting and absorbing via multi-scale metamaterial systems for Internet of things," Applied Energy, Elsevier, vol. 254(C).
    2. Guifu Du & Dongliang Zhang & Guoxin Li & Chonglin Wang & Jianhua Liu, 2016. "Evaluation of Rail Potential Based on Power Distribution in DC Traction Power Systems," Energies, MDPI, vol. 9(9), pages 1-20, September.
    3. Guo, Lukai & Lu, Qing, 2017. "Potentials of piezoelectric and thermoelectric technologies for harvesting energy from pavements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 761-773.
    4. Chengtao Wang & Wei Li & Yuqiao Wang & Shaoyi Xu & Kunpeng Li, 2019. "Evaluation Model for the Scope of DC Interference Generated by Stray Currents in Light Rail Systems," Energies, MDPI, vol. 12(4), pages 1-17, February.
    5. Xinyu An & Baowei Song & Wenlong Tian & Congcong Ma, 2018. "Design and CFD Simulations of a Vortex-Induced Piezoelectric Energy Converter (VIPEC) for Underwater Environment," Energies, MDPI, vol. 11(2), pages 1-15, February.
    6. Wei, Chongfeng & Jing, Xingjian, 2017. "A comprehensive review on vibration energy harvesting: Modelling and realization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1-18.
    7. Gholikhani, Mohammadreza & Nasouri, Reza & Tahami, Seyed Amid & Legette, Sarah & Dessouky, Samer & Montoya, Arturo, 2019. "Harvesting kinetic energy from roadway pavement through an electromagnetic speed bump," Applied Energy, Elsevier, vol. 250(C), pages 503-511.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Niloufar Zabihi & Mohamed Saafi, 2020. "Recent Developments in the Energy Harvesting Systems from Road Infrastructures," Sustainability, MDPI, vol. 12(17), pages 1-27, August.
    2. Kaiyuan Zhao & Qichang Zhang & Wei Wang, 2019. "Optimization of Galloping Piezoelectric Energy Harvester with V-Shaped Groove in Low Wind Speed," Energies, MDPI, vol. 12(24), pages 1-18, December.
    3. Chen, Jiayu & Qiu, Qiwen & Han, Yilong & Lau, Denvid, 2019. "Piezoelectric materials for sustainable building structures: Fundamentals and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 14-25.
    4. Zabihi, Niloufar & Gu, Zewen & Saafi, Mohamed, 2023. "Crank shaft road electromagnetic road energy harvester for smart city applications," Applied Energy, Elsevier, vol. 352(C).
    5. Gholikhani, Mohammadreza & Roshani, Hossein & Dessouky, Samer & Papagiannakis, A.T., 2020. "A critical review of roadway energy harvesting technologies," Applied Energy, Elsevier, vol. 261(C).
    6. Hu, Hengwu & Vizzari, Domenico & Zha, Xudong & Roberts, Ronald, 2021. "Solar pavements: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    7. Wang, J. & Xiao, F. & Zhao, H., 2021. "Thermoelectric, piezoelectric and photovoltaic harvesting technologies for pavement engineering," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    8. Gao, Mingyuan & Cong, Jianli & Xiao, Jieling & He, Qing & Li, Shoutai & Wang, Yuan & Yao, Ye & Chen, Rong & Wang, Ping, 2020. "Dynamic modeling and experimental investigation of self-powered sensor nodes for freight rail transport," Applied Energy, Elsevier, vol. 257(C).
    9. Liu, Mengzhou & Zhang, Yuan & Fu, Hailing & Qin, Yong & Ding, Ao & Yeatman, Eric M., 2023. "A seesaw-inspired bistable energy harvester with adjustable potential wells for self-powered internet of train monitoring," Applied Energy, Elsevier, vol. 337(C).
    10. Xu, Yifei & Xian, Tongrui & Chen, Chen & Wang, Guosen & Wang, Mengdi & Shi, Weijie, 2024. "Mathematical modeling and parameter optimization of a stacked piezoelectric energy harvester based on water pressure pulsation," Energy, Elsevier, vol. 292(C).
    11. Vidya Chandran & Sekar M. & Sheeja Janardhanan & Varun Menon, 2018. "Numerical Study on the Influence of Mass and Stiffness Ratios on the Vortex Induced Motion of an Elastically Mounted Cylinder for Harnessing Power," Energies, MDPI, vol. 11(10), pages 1-23, September.
    12. Zhang, Tingsheng & Kong, Lingji & Zhu, Zhongyin & Wu, Xiaoping & Li, Hai & Zhang, Zutao & Yan, Jinyue, 2024. "An electromagnetic vibration energy harvesting system based on series coupling input mechanism for freight railroads," Applied Energy, Elsevier, vol. 353(PA).
    13. Chengtao Wang & Wei Li & Yuqiao Wang & Shaoyi Xu & Kunpeng Li, 2019. "Evaluation Model for the Scope of DC Interference Generated by Stray Currents in Light Rail Systems," Energies, MDPI, vol. 12(4), pages 1-17, February.
    14. Abdelkareem, Mohamed A.A. & Xu, Lin & Ali, Mohamed Kamal Ahmed & El-Daly, Abdel-Rahman B.M. & Hassan, Mohamed A. & Elagouz, Ahmed & Bo, Yang, 2019. "Analysis of the prospective vibrational energy harvesting of heavy-duty truck suspensions: A simulation approach," Energy, Elsevier, vol. 173(C), pages 332-351.
    15. Luo, Rongkang & Yu, Zhihao & Wu, Peibao & Hou, Zhichao, 2023. "Analytical solutions of the energy harvesting potential from vehicle vertical vibration based on statistical energy conservation," Energy, Elsevier, vol. 264(C).
    16. Li, Hai & Zheng, Peng & Zhang, Tingsheng & Zou, Yingquan & Pan, Yajia & Zhang, Zutao & Azam, Ali, 2021. "A high-efficiency energy regenerative shock absorber for powering auxiliary devices of new energy driverless buses," Applied Energy, Elsevier, vol. 295(C).
    17. Huguet, Thomas & Badel, Adrien & Druet, Olivier & Lallart, Mickaël, 2018. "Drastic bandwidth enhancement of bistable energy harvesters: Study of subharmonic behaviors and their stability robustness," Applied Energy, Elsevier, vol. 226(C), pages 607-617.
    18. Zhang, L.B. & Dai, H.L. & Abdelkefi, A. & Lin, S.X. & Wang, L., 2019. "Theoretical modeling, wind tunnel measurements, and realistic environment testing of galloping-based electromagnetic energy harvesters," Applied Energy, Elsevier, vol. 254(C).
    19. Shan, Xiaobiao & Li, Hongliang & Yang, Yuancai & Feng, Ju & Wang, Yicong & Xie, Tao, 2019. "Enhancing the performance of an underwater piezoelectric energy harvester based on flow-induced vibration," Energy, Elsevier, vol. 172(C), pages 134-140.
    20. Liu, Cheng & Wang, Wei & Wang, Zhixia & Ding, Bei & Wu, Zhiqiang & Feng, Jingjing, 2024. "Data-driven modeling and fast adjustment for digital coded metasurfaces database: Application in adaptive electromagnetic energy harvesting," Applied Energy, Elsevier, vol. 365(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6206-:d:645728. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.