IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i16p6097-d1221829.html
   My bibliography  Save this article

Economic and Ecological Impacts on the Integration of Biomass-Based SNG and FT Diesel in the Austrian Energy System

Author

Listed:
  • Martin Hammerschmid

    (Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Getreidemarkt 9/166, 1060 Vienna, Austria)

  • Alexander Bartik

    (Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Getreidemarkt 9/166, 1060 Vienna, Austria)

  • Florian Benedikt

    (Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Getreidemarkt 9/166, 1060 Vienna, Austria)

  • Marton Veress

    (Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Getreidemarkt 9/166, 1060 Vienna, Austria)

  • Simon Pratschner

    (Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Getreidemarkt 9/166, 1060 Vienna, Austria)

  • Stefan Müller

    (Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Getreidemarkt 9/166, 1060 Vienna, Austria)

  • Hermann Hofbauer

    (Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Getreidemarkt 9/166, 1060 Vienna, Austria)

Abstract

The production of sustainable, biomass-based synthetic natural gas (SNG) and Fischer–Tropsch (FT) diesel can contribute significantly to climate neutrality. This work aims to determine the commercial-scale production costs and CO 2 footprint of biomass-based SNG and FT diesel to find suitable integration scenarios for both products in the Austrian energy system. Based on the simulation results, either 65 MW SNG and 14.2 MW district heat, or 36.6 MW FT diesel, 17.6 MW FT naphtha, and 22.8 MW district heat can be produced from 100 MW biomass. The production costs with taxes for wood-based SNG are 70–91 EUR /MWh and for FT diesel they are 1.31–1.89 EUR /L, depending on whether pre-crisis or crisis times are considered, which are in the range of fossil market prices. The CO 2 footprint of both products is 90% lower than that of their fossil counterparts. Finally, suitable integration scenarios for SNG and FT diesel in the Austrian energy system were determined. For SNG, use within the energy sector for covering electricity peak loads or use in the industry sector for providing high-temperature heat were identified as the most promising scenarios. In the case of FT diesel, its use in the heavy-duty traffic sector seems most suitable.

Suggested Citation

  • Martin Hammerschmid & Alexander Bartik & Florian Benedikt & Marton Veress & Simon Pratschner & Stefan Müller & Hermann Hofbauer, 2023. "Economic and Ecological Impacts on the Integration of Biomass-Based SNG and FT Diesel in the Austrian Energy System," Energies, MDPI, vol. 16(16), pages 1-29, August.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:16:p:6097-:d:1221829
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/16/6097/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/16/6097/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Martin Hammerschmid & Daniel Cenk Rosenfeld & Alexander Bartik & Florian Benedikt & Josef Fuchs & Stefan Müller, 2023. "Methodology for the Development of Virtual Representations within the Process Development Framework of Energy Plants: From Digital Model to Digital Predictive Twin—A Review," Energies, MDPI, vol. 16(6), pages 1-30, March.
    2. Simon Pratschner & Martin Hammerschmid & Florian J. Müller & Stefan Müller & Franz Winter, 2022. "Simulation of a Pilot Scale Power-to-Liquid Plant Producing Synthetic Fuel and Wax by Combining Fischer–Tropsch Synthesis and SOEC," Energies, MDPI, vol. 15(11), pages 1-22, June.
    3. Mauerhofer, A.M. & Schmid, J.C. & Benedikt, F. & Fuchs, J. & Müller, S. & Hofbauer, H., 2019. "Dual fluidized bed steam gasification: Change of product gas quality along the reactor height," Energy, Elsevier, vol. 173(C), pages 1256-1272.
    4. Martin Hammerschmid & Johannes Konrad & Andreas Werner & Tom Popov & Stefan Müller, 2022. "ENECO 2 Calc—A Modeling Tool for the Investigation of Energy Transition Paths toward Climate Neutrality within Municipalities," Energies, MDPI, vol. 15(19), pages 1-32, September.
    5. Christina Wulf & Martin Kaltschmitt, 2018. "Hydrogen Supply Chains for Mobility—Environmental and Economic Assessment," Sustainability, MDPI, vol. 10(6), pages 1-26, May.
    6. Li, Kangkang & Leigh, Wardhaugh & Feron, Paul & Yu, Hai & Tade, Moses, 2016. "Systematic study of aqueous monoethanolamine (MEA)-based CO2 capture process: Techno-economic assessment of the MEA process and its improvements," Applied Energy, Elsevier, vol. 165(C), pages 648-659.
    7. Benedikt, F. & Schmid, J.C. & Fuchs, J. & Mauerhofer, A.M. & Müller, S. & Hofbauer, H., 2018. "Fuel flexible gasification with an advanced 100 kW dual fluidized bed steam gasification pilot plant," Energy, Elsevier, vol. 164(C), pages 329-343.
    8. Reinhard Rauch & Jitka Hrbek & Hermann Hofbauer, 2014. "Biomass gasification for synthesis gas production and applications of the syngas," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 3(4), pages 343-362, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stanger, Lukas & Bartik, Alexander & Hammerschmid, Martin & Jankovic, Stefan & Benedikt, Florian & Müller, Stefan & Schirrer, Alexander & Jakubek, Stefan & Kozek, Martin, 2024. "Model predictive control of a dual fluidized bed gasification plant," Applied Energy, Elsevier, vol. 361(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anca-Couce, A. & Hochenauer, C. & Scharler, R., 2021. "Bioenergy technologies, uses, market and future trends with Austria as a case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    2. Benedikt, Florian & Kuba, Matthias & Schmid, Johannes Christian & Müller, Stefan & Hofbauer, Hermann, 2019. "Assessment of correlations between tar and product gas composition in dual fluidized bed steam gasification for online tar prediction," Applied Energy, Elsevier, vol. 238(C), pages 1138-1149.
    3. Stanger, Lukas & Bartik, Alexander & Hammerschmid, Martin & Jankovic, Stefan & Benedikt, Florian & Müller, Stefan & Schirrer, Alexander & Jakubek, Stefan & Kozek, Martin, 2024. "Model predictive control of a dual fluidized bed gasification plant," Applied Energy, Elsevier, vol. 361(C).
    4. Wan, Zhanghao & Yang, Shiliang & Wei, Yonggang & Hu, Jianhang & Wang, Hua, 2020. "CFD modeling of the flow dynamics and gasification in the combustor and gasifier of a dual fluidized bed pilot plant," Energy, Elsevier, vol. 198(C).
    5. Stanger, Lukas & Schirrer, Alexander & Benedikt, Florian & Bartik, Alexander & Jankovic, Stefan & Müller, Stefan & Kozek, Martin, 2023. "Dynamic modeling of dual fluidized bed steam gasification for control design," Energy, Elsevier, vol. 265(C).
    6. Fuchs, Josef & Schmid, Johannes C. & Müller, Stefan & Hofbauer, Hermann, 2019. "Dual fluidized bed gasification of biomass with selective carbon dioxide removal and limestone as bed material: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 212-231.
    7. Zhang, Fengxia & Yang, Shiliang & Yang, Bin & Wang, Hua, 2022. "Mesoscale bubble dynamics in the gasifier of a 1MWth dual fluidized bed gasifier for biomass gasification," Energy, Elsevier, vol. 238(PB).
    8. Yang, Shiliang & Wang, Hua & Wei, Yonggang & Hu, Jianhang & Chew, Jia Wei, 2019. "Eulerian-Lagrangian simulation of air-steam biomass gasification in a three-dimensional bubbling fluidized gasifier," Energy, Elsevier, vol. 181(C), pages 1075-1093.
    9. Aghaalikhani, Arash & Schmid, Johannes C. & Borello, Domenico & Fuchs, Joseph & Benedikt, Florian & Hofbauer, Herman & Rispoli, Franco & Henriksen, Ulrick B. & Sárossy, Zsuzsa & Cedola, Luca, 2019. "Detailed modelling of biomass steam gasification in a dual fluidized bed gasifier with temperature variation," Renewable Energy, Elsevier, vol. 143(C), pages 703-718.
    10. AlNouss, Ahmed & McKay, Gordon & Al-Ansari, Tareq, 2020. "Enhancing waste to hydrogen production through biomass feedstock blending: A techno-economic-environmental evaluation," Applied Energy, Elsevier, vol. 266(C).
    11. Mauerhofer, A.M. & Schmid, J.C. & Benedikt, F. & Fuchs, J. & Müller, S. & Hofbauer, H., 2019. "Dual fluidized bed steam gasification: Change of product gas quality along the reactor height," Energy, Elsevier, vol. 173(C), pages 1256-1272.
    12. Cheng, Chin-hung & Li, Kangkang & Yu, Hai & Jiang, Kaiqi & Chen, Jian & Feron, Paul, 2018. "Amine-based post-combustion CO2 capture mediated by metal ions: Advancement of CO2 desorption using copper ions," Applied Energy, Elsevier, vol. 211(C), pages 1030-1038.
    13. Solomon Aforkoghene Aromada & Nils Henrik Eldrup & Fredrik Normann & Lars Erik Øi, 2020. "Techno-Economic Assessment of Different Heat Exchangers for CO 2 Capture," Energies, MDPI, vol. 13(23), pages 1-27, November.
    14. Jun Sheng Teh & Yew Heng Teoh & Heoy Geok How & Thanh Danh Le & Yeoh Jun Jie Jason & Huu Tho Nguyen & Dong Lin Loo, 2021. "The Potential of Sustainable Biomass Producer Gas as a Waste-to-Energy Alternative in Malaysia," Sustainability, MDPI, vol. 13(7), pages 1-31, April.
    15. Donatella Barisano & Giuseppe Canneto & Francesco Nanna & Antonio Villone & Emanuele Fanelli & Cesare Freda & Massimiliano Grieco & Andrea Lotierzo & Giacinto Cornacchia & Giacobbe Braccio & Vera Marc, 2022. "Investigation of an Intensified Thermo-Chemical Experimental Set-Up for Hydrogen Production from Biomass: Gasification Process Integrated to a Portable Purification System—Part II," Energies, MDPI, vol. 15(13), pages 1-16, June.
    16. Stolecka, Katarzyna & Rusin, Andrzej, 2020. "Analysis of hazards related to syngas production and transport," Renewable Energy, Elsevier, vol. 146(C), pages 2535-2555.
    17. Benim, Ali Cemal & Pfeiffelmann, Björn & Ocłoń, Paweł & Taler, Jan, 2019. "Computational investigation of a lifted hydrogen flame with LES and FGM," Energy, Elsevier, vol. 173(C), pages 1172-1181.
    18. Akito Ozawa & Yuki Kudoh, 2021. "Assessing Uncertainties of Life-Cycle CO 2 Emissions Using Hydrogen Energy for Power Generation," Energies, MDPI, vol. 14(21), pages 1-23, October.
    19. Xie, Heping & Liu, Tao & Wang, Yufei & Wu, Yifan & Wang, Fuhuan & Tang, Liang & Jiang, Wen & Liang, Bin, 2017. "Enhancement of electricity generation in CO2 mineralization cell by using sodium sulfate as the reaction medium," Applied Energy, Elsevier, vol. 195(C), pages 991-999.
    20. Martin Haaf & Peter Ohlemüller & Jochen Ströhle & Bernd Epple, 2020. "Techno-economic assessment of alternative fuels in second-generation carbon capture and storage processes," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(2), pages 149-164, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:16:p:6097-:d:1221829. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.