IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v361y2024ics0306261924003003.html
   My bibliography  Save this article

Model predictive control of a dual fluidized bed gasification plant

Author

Listed:
  • Stanger, Lukas
  • Bartik, Alexander
  • Hammerschmid, Martin
  • Jankovic, Stefan
  • Benedikt, Florian
  • Müller, Stefan
  • Schirrer, Alexander
  • Jakubek, Stefan
  • Kozek, Martin

Abstract

Dual fluidized bed (DFB) gasification is a promising method for producing valuable gaseous energy carriers from biogenic feedstocks as a substitute for fossil fuels. State-of-the-art DFB gasification plants mainly rely on manual operation or single-input single-output control loops, and scientific contributions only exist for controlling individual process variables. This leaves a research gap in terms of comprehensive control strategies for DFB gasification. To address this gap, we propose a multivariate control strategy that focuses on crucial process variables, such as product gas quantity, gasification temperature, and bed material circulation rate. Our approach utilizes model predictive control (MPC), which enables effective process control while explicitly considering process constraints. A simulation study is given demonstrating how different MPC parametrizations influence the behavior of the closed-loop system. Experimental results from a 100kW pilot plant at TU Wien demonstrate the successful control achieved by the proposed control algorithm.

Suggested Citation

  • Stanger, Lukas & Bartik, Alexander & Hammerschmid, Martin & Jankovic, Stefan & Benedikt, Florian & Müller, Stefan & Schirrer, Alexander & Jakubek, Stefan & Kozek, Martin, 2024. "Model predictive control of a dual fluidized bed gasification plant," Applied Energy, Elsevier, vol. 361(C).
  • Handle: RePEc:eee:appene:v:361:y:2024:i:c:s0306261924003003
    DOI: 10.1016/j.apenergy.2024.122917
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924003003
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.122917?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Martin Hammerschmid & Daniel Cenk Rosenfeld & Alexander Bartik & Florian Benedikt & Josef Fuchs & Stefan Müller, 2023. "Methodology for the Development of Virtual Representations within the Process Development Framework of Energy Plants: From Digital Model to Digital Predictive Twin—A Review," Energies, MDPI, vol. 16(6), pages 1-30, March.
    2. Mauerhofer, A.M. & Schmid, J.C. & Benedikt, F. & Fuchs, J. & Müller, S. & Hofbauer, H., 2019. "Dual fluidized bed steam gasification: Change of product gas quality along the reactor height," Energy, Elsevier, vol. 173(C), pages 1256-1272.
    3. Liu, Hui & Cattolica, Robert J. & Seiser, Reinhard & Liao, Chang-hsien, 2015. "Three-dimensional full-loop simulation of a dual fluidized-bed biomass gasifier," Applied Energy, Elsevier, vol. 160(C), pages 489-501.
    4. Karl, Jürgen & Pröll, Tobias, 2018. "Steam gasification of biomass in dual fluidized bed gasifiers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 64-78.
    5. Martin Hammerschmid & Alexander Bartik & Florian Benedikt & Marton Veress & Simon Pratschner & Stefan Müller & Hermann Hofbauer, 2023. "Economic and Ecological Impacts on the Integration of Biomass-Based SNG and FT Diesel in the Austrian Energy System," Energies, MDPI, vol. 16(16), pages 1-29, August.
    6. Kuba, Matthias & Kraft, Stephan & Kirnbauer, Friedrich & Maierhans, Frank & Hofbauer, Hermann, 2018. "Influence of controlled handling of solid inorganic materials and design changes on the product gas quality in dual fluid bed gasification of woody biomass," Applied Energy, Elsevier, vol. 210(C), pages 230-240.
    7. Sun, Haoran & Bao, Guirong & Yang, Shiliang & Hu, Jianhang & Wang, Hua, 2023. "Numerical study of the biomass gasification process in an industrial-scale dual fluidized bed gasifier with 8MWth input," Renewable Energy, Elsevier, vol. 211(C), pages 681-696.
    8. Stanger, Lukas & Schirrer, Alexander & Benedikt, Florian & Bartik, Alexander & Jankovic, Stefan & Müller, Stefan & Kozek, Martin, 2023. "Dynamic modeling of dual fluidized bed steam gasification for control design," Energy, Elsevier, vol. 265(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wan, Zhanghao & Yang, Shiliang & Wei, Yonggang & Hu, Jianhang & Wang, Hua, 2020. "CFD modeling of the flow dynamics and gasification in the combustor and gasifier of a dual fluidized bed pilot plant," Energy, Elsevier, vol. 198(C).
    2. Zhang, Fengxia & Yang, Shiliang & Yang, Bin & Wang, Hua, 2022. "Mesoscale bubble dynamics in the gasifier of a 1MWth dual fluidized bed gasifier for biomass gasification," Energy, Elsevier, vol. 238(PB).
    3. Anca-Couce, A. & Hochenauer, C. & Scharler, R., 2021. "Bioenergy technologies, uses, market and future trends with Austria as a case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    4. Yang, Shiliang & Zhou, Tao & Wei, Yonggang & Hu, Jianhang & Wang, Hua, 2020. "Dynamical and thermal property of rising bubbles in the bubbling fluidized biomass gasifier with wide particle size distribution," Applied Energy, Elsevier, vol. 259(C).
    5. Martin Hammerschmid & Alexander Bartik & Florian Benedikt & Marton Veress & Simon Pratschner & Stefan Müller & Hermann Hofbauer, 2023. "Economic and Ecological Impacts on the Integration of Biomass-Based SNG and FT Diesel in the Austrian Energy System," Energies, MDPI, vol. 16(16), pages 1-29, August.
    6. Fürsatz, K. & Fuchs, J. & Benedikt, F. & Kuba, M. & Hofbauer, H., 2021. "Effect of biomass fuel ash and bed material on the product gas composition in DFB steam gasification," Energy, Elsevier, vol. 219(C).
    7. Zhou, Chunbao & Chen, Yuanxiang & Xing, Xuyang & Chen, Lei & Liu, Chenglong & Chao, Li & Yao, Bang & Zhang, Yingwen & Dai, Jianjun & Liu, Yang & Wang, Jun & Dong, Jie & Li, Yunxiang & Fan, Dekai & Wan, 2024. "Pilot-scale pyrolysis and activation of typical biomass chips in an interconnected dual fluidized bed: Comparison and analysis of products," Renewable Energy, Elsevier, vol. 225(C).
    8. Yang, Shiliang & Wang, Hua & Wei, Yonggang & Hu, Jianhang & Chew, Jia Wei, 2019. "Eulerian-Lagrangian simulation of air-steam biomass gasification in a three-dimensional bubbling fluidized gasifier," Energy, Elsevier, vol. 181(C), pages 1075-1093.
    9. Aghaalikhani, Arash & Schmid, Johannes C. & Borello, Domenico & Fuchs, Joseph & Benedikt, Florian & Hofbauer, Herman & Rispoli, Franco & Henriksen, Ulrick B. & Sárossy, Zsuzsa & Cedola, Luca, 2019. "Detailed modelling of biomass steam gasification in a dual fluidized bed gasifier with temperature variation," Renewable Energy, Elsevier, vol. 143(C), pages 703-718.
    10. Yang, Shiliang & Liang, Jin & Wang, Shuai & Wang, Hua, 2021. "High-fidelity investigation of thermochemical conversion of biomass material in a full-loop circulating fluidized bed gasifier," Energy, Elsevier, vol. 224(C).
    11. Kolb, Sebastian & Plankenbühler, Thomas & Frank, Jonas & Dettelbacher, Johannes & Ludwig, Ralf & Karl, Jürgen & Dillig, Marius, 2021. "Scenarios for the integration of renewable gases into the German natural gas market – A simulation-based optimisation approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    12. Oni, Babalola Aisosa & Sanni, Samuel Eshorame & Ikhazuangbe, Prosper Monday-Ohien & Ibegbu, Anayo Jerome, 2021. "Experimental investigation of steam-air gasification of Cymbopogon citratus using Ni/dolomite/CeO2/K2CO3 as catalyst in a dual stage reactor for syngas and hydrogen production," Energy, Elsevier, vol. 237(C).
    13. Bernardine Chidozie & Ana Ramos & José Vasconcelos & Luis Pinto Ferreira & Reinaldo Gomes, 2024. "Highlighting Sustainability Criteria in Residual Biomass Supply Chains: A Dynamic Simulation Approach," Sustainability, MDPI, vol. 16(22), pages 1-24, November.
    14. Gabbrielli, Roberto & Barontini, Federica & Frigo, Stefano & Bressan, Luigi, 2022. "Numerical analysis of bio-methane production from biomass-sewage sludge oxy-steam gasification and methanation process," Applied Energy, Elsevier, vol. 307(C).
    15. Yin, Weijie & Wang, Shuai & Zhang, Kai & He, Yurong, 2020. "Numerical investigation of in situ gasification chemical looping combustion of biomass in a fluidized bed reactor," Renewable Energy, Elsevier, vol. 151(C), pages 216-225.
    16. Sitka, Andrzej & Szulc, Piotr & Smykowski, Daniel & Jodkowski, Wiesław, 2021. "Application of poultry manure as an energy resource by its gasification in a prototype rotary counterflow gasifier," Renewable Energy, Elsevier, vol. 175(C), pages 422-429.
    17. Xue, Xiaodong & Liu, Changchun & Han, Wei & Wang, Zefeng & Zhang, Na & Jin, Hongguang & Wang, Xiaodong, 2023. "Proposal and investigation of a high-efficiency coal-fired power generation system enabled by chemical recuperative supercritical water coal gasification," Energy, Elsevier, vol. 267(C).
    18. Vakalis, Stergios & Moustakas, Konstantinos, 2019. "Modelling of advanced gasification systems (MAGSY): Simulation and validation for the case of the rising co-current reactor," Applied Energy, Elsevier, vol. 242(C), pages 526-533.
    19. Salem, Ahmed M. & Abd Elbar, Ayman Refat, 2023. "The feasibility and performance of using producer gas as a gasifying medium," Energy, Elsevier, vol. 283(C).
    20. Zhang, Jingxin & Hu, Qiang & Qu, Yiyuan & Dai, Yanjun & He, Yiliang & Wang, Chi-Hwa & Tong, Yen Wah, 2020. "Integrating food waste sorting system with anaerobic digestion and gasification for hydrogen and methane co-production," Applied Energy, Elsevier, vol. 257(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:361:y:2024:i:c:s0306261924003003. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.