IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v165y2016icp648-659.html
   My bibliography  Save this article

Systematic study of aqueous monoethanolamine (MEA)-based CO2 capture process: Techno-economic assessment of the MEA process and its improvements

Author

Listed:
  • Li, Kangkang
  • Leigh, Wardhaugh
  • Feron, Paul
  • Yu, Hai
  • Tade, Moses

Abstract

The present study investigated the technical and economic performance of the monoethanolamine (MEA)-based post-combustion capture process and its improvements integrated with a 650-MW coal-fired power station. A rigorous, rate-based model developed in Aspen Plus® was employed to evaluate technical performance, while a comprehensive economic model was used to determine the required capital investment and evaluate economic performance. The techno-economic model was validated with published cost results. Our estimation of the capital investment for the baseline MEA capture plant was US$1357/kW, with a CO2 avoided cost of US$86.4/tonne. We then proposed process improvements such as parameter optimisation, lean/rich heat exchanger optimisation and flow sheet modifications to improve energy and cost performance. The combined process improvements reduced the capital investment by US$72/kW (a 5.3% saving) while cutting overall energy consumption by 24.5MW/h (a 13.5% reduction). As a result, the CO2 avoided cost fell to $75.1/tonne CO2, a saving of US$11.3/tonne CO2 compared with the baseline. Lastly, we performed a sensitivity study and cost breakdown analysis to understand how the CO2 avoided cost would be apportioned to the economic and technical parameters. The results indicate the directions of technical development to further improve the economic viability of the CO2 capture process.

Suggested Citation

  • Li, Kangkang & Leigh, Wardhaugh & Feron, Paul & Yu, Hai & Tade, Moses, 2016. "Systematic study of aqueous monoethanolamine (MEA)-based CO2 capture process: Techno-economic assessment of the MEA process and its improvements," Applied Energy, Elsevier, vol. 165(C), pages 648-659.
  • Handle: RePEc:eee:appene:v:165:y:2016:i:c:p:648-659
    DOI: 10.1016/j.apenergy.2015.12.109
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915016827
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.12.109?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kunze, Christian & Spliethoff, Hartmut, 2012. "Assessment of oxy-fuel, pre- and post-combustion-based carbon capture for future IGCC plants," Applied Energy, Elsevier, vol. 94(C), pages 109-116.
    2. Li, Kangkang & Yu, Hai & Qi, Guojie & Feron, Paul & Tade, Moses & Yu, Jingwen & Wang, Shujuan, 2015. "Rate-based modelling of combined SO2 removal and NH3 recycling integrated with an aqueous NH3-based CO2 capture process," Applied Energy, Elsevier, vol. 148(C), pages 66-77.
    3. Manzolini, G. & Sanchez Fernandez, E. & Rezvani, S. & Macchi, E. & Goetheer, E.L.V. & Vlugt, T.J.H., 2015. "Economic assessment of novel amine based CO2 capture technologies integrated in power plants based on European Benchmarking Task Force methodology," Applied Energy, Elsevier, vol. 138(C), pages 546-558.
    4. Zhou, Wenji & Zhu, Bing & Fuss, Sabine & Szolgayová, Jana & Obersteiner, Michael & Fei, Weiyang, 2010. "Uncertainty modeling of CCS investment strategy in China's power sector," Applied Energy, Elsevier, vol. 87(7), pages 2392-2400, July.
    5. Hu, Yukun & Yan, Jinyue & Li, Hailong, 2012. "Effects of flue gas recycle on oxy-coal power generation systems," Applied Energy, Elsevier, vol. 97(C), pages 255-263.
    6. Han, Jee-Hoon & Ahn, Yu-Chan & Lee, In-Beum, 2012. "A multi-objective optimization model for sustainable electricity generation and CO2 mitigation (EGCM) infrastructure design considering economic profit and financial risk," Applied Energy, Elsevier, vol. 95(C), pages 186-195.
    7. Pan, Ming & Aziz, Farah & Li, Baohong & Perry, Simon & Zhang, Nan & Bulatov, Igor & Smith, Robin, 2016. "Application of optimal design methodologies in retrofitting natural gas combined cycle power plants with CO2 capture," Applied Energy, Elsevier, vol. 161(C), pages 695-706.
    8. Ashleigh Cousins & Aaron Cottrell & Anthony Lawson & Sanger Huang & Paul H.M. Feron, 2012. "Model verification and evaluation of the rich‐split process modification at an Australian‐based post combustion CO 2 capture pilot plant," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 2(5), pages 329-345, October.
    9. Gerbelová, Hana & Versteeg, Peter & Ioakimidis, Christos S. & Ferrão, Paulo, 2013. "The effect of retrofitting Portuguese fossil fuel power plants with CCS," Applied Energy, Elsevier, vol. 101(C), pages 280-287.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Minkai & Guo, Yincheng, 2013. "Rate based modeling of absorption and regeneration for CO2 capture by aqueous ammonia solution," Applied Energy, Elsevier, vol. 111(C), pages 142-152.
    2. Li, Kangkang & Yu, Hai & Qi, Guojie & Feron, Paul & Tade, Moses & Yu, Jingwen & Wang, Shujuan, 2015. "Rate-based modelling of combined SO2 removal and NH3 recycling integrated with an aqueous NH3-based CO2 capture process," Applied Energy, Elsevier, vol. 148(C), pages 66-77.
    3. Yang, Lin & Xu, Mao & Fan, Jingli & Liang, Xi & Zhang, Xian & Lv, Haodong & Wang, Dong, 2021. "Financing coal-fired power plant to demonstrate CCS (carbon capture and storage) through an innovative policy incentive in China," Energy Policy, Elsevier, vol. 158(C).
    4. Xu, Yin & Jin, Baosheng & Zhao, Yongling & Hu, Eric J. & Chen, Xiaole & Li, Xiaochuan, 2018. "Numerical simulation of aqueous ammonia-based CO2 absorption in a sprayer tower: An integrated model combining gas-liquid hydrodynamics and chemistry," Applied Energy, Elsevier, vol. 211(C), pages 318-333.
    5. Zhao, Bin & Liu, Fangzheng & Cui, Zheng & Liu, Changjun & Yue, Hairong & Tang, Siyang & Liu, Yingying & Lu, Houfang & Liang, Bin, 2017. "Enhancing the energetic efficiency of MDEA/PZ-based CO2 capture technology for a 650MW power plant: Process improvement," Applied Energy, Elsevier, vol. 185(P1), pages 362-375.
    6. Cheng, Chin-hung & Li, Kangkang & Yu, Hai & Jiang, Kaiqi & Chen, Jian & Feron, Paul, 2018. "Amine-based post-combustion CO2 capture mediated by metal ions: Advancement of CO2 desorption using copper ions," Applied Energy, Elsevier, vol. 211(C), pages 1030-1038.
    7. Lee, Suh-Young & Lee, Jae-Uk & Lee, In-Beum & Han, Jeehoon, 2017. "Design under uncertainty of carbon capture and storage infrastructure considering cost, environmental impact, and preference on risk," Applied Energy, Elsevier, vol. 189(C), pages 725-738.
    8. Rochedo, Pedro R.R. & Szklo, Alexandre, 2013. "Designing learning curves for carbon capture based on chemical absorption according to the minimum work of separation," Applied Energy, Elsevier, vol. 108(C), pages 383-391.
    9. Georgios Varvoutis & Athanasios Lampropoulos & Evridiki Mandela & Michalis Konsolakis & George E. Marnellos, 2022. "Recent Advances on CO 2 Mitigation Technologies: On the Role of Hydrogenation Route via Green H 2," Energies, MDPI, vol. 15(13), pages 1-38, June.
    10. Wu, Zeyang & Liu, Sen & Gao, Hongxia & Yin, Qiqi & Liang, Zhiwu, 2019. "A study of structure-activity relationships of aqueous diamine solutions with low heat of regeneration for post-combustion CO2 capture," Energy, Elsevier, vol. 167(C), pages 359-368.
    11. Adams, T. & Mac Dowell, N., 2016. "Off-design point modelling of a 420MW CCGT power plant integrated with an amine-based post-combustion CO2 capture and compression process," Applied Energy, Elsevier, vol. 178(C), pages 681-702.
    12. Hagi, Hayato & Neveux, Thibaut & Le Moullec, Yann, 2015. "Efficiency evaluation procedure of coal-fired power plants with CO2 capture, cogeneration and hybridization," Energy, Elsevier, vol. 91(C), pages 306-323.
    13. Zhu, Xuancan & Shi, Yixiang & Cai, Ningsheng, 2016. "Integrated gasification combined cycle with carbon dioxide capture by elevated temperature pressure swing adsorption," Applied Energy, Elsevier, vol. 176(C), pages 196-208.
    14. Viebahn, Peter & Vallentin, Daniel & Höller, Samuel, 2015. "Prospects of carbon capture and storage (CCS) in China’s power sector – An integrated assessment," Applied Energy, Elsevier, vol. 157(C), pages 229-244.
    15. Jiang, Kaiqi & Li, Kangkang & Yu, Hai & Chen, Zuliang & Wardhaugh, Leigh & Feron, Paul, 2017. "Advancement of ammonia based post-combustion CO2 capture using the advanced flash stripper process," Applied Energy, Elsevier, vol. 202(C), pages 496-506.
    16. Tola, Vittorio & Pettinau, Alberto, 2014. "Power generation plants with carbon capture and storage: A techno-economic comparison between coal combustion and gasification technologies," Applied Energy, Elsevier, vol. 113(C), pages 1461-1474.
    17. Oh, Se-Young & Yun, Seokwon & Kim, Jin-Kuk, 2018. "Process integration and design for maximizing energy efficiency of a coal-fired power plant integrated with amine-based CO2 capture process," Applied Energy, Elsevier, vol. 216(C), pages 311-322.
    18. Chen, Wei-Hsin & Chen, Shu-Mi & Hung, Chen-I, 2013. "Carbon dioxide capture by single droplet using Selexol, Rectisol and water as absorbents: A theoretical approach," Applied Energy, Elsevier, vol. 111(C), pages 731-741.
    19. Oboirien, B.O. & North, B.C. & Kleyn, T., 2014. "Techno-economic assessments of oxy-fuel technology for South African coal-fired power stations," Energy, Elsevier, vol. 66(C), pages 550-555.
    20. Cristóbal, Jorge & Guillén-Gosálbez, Gonzalo & Kraslawski, Andrzej & Irabien, Angel, 2013. "Stochastic MILP model for optimal timing of investments in CO2 capture technologies under uncertainty in prices," Energy, Elsevier, vol. 54(C), pages 343-351.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:165:y:2016:i:c:p:648-659. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.