Metal foam-phase change material composites for thermal energy storage: A review of performance parameters
Author
Abstract
Suggested Citation
DOI: 10.1016/j.rser.2021.111919
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Zhang, Shuai & Feng, Daili & Shi, Lei & Wang, Li & Jin, Yingai & Tian, Limei & Li, Ziyuan & Wang, Guoyong & Zhao, Lei & Yan, Yuying, 2021. "A review of phase change heat transfer in shape-stabilized phase change materials (ss-PCMs) based on porous supports for thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
- Zhang, P. & Xiao, X. & Meng, Z.N. & Li, M., 2015. "Heat transfer characteristics of a molten-salt thermal energy storage unit with and without heat transfer enhancement," Applied Energy, Elsevier, vol. 137(C), pages 758-772.
- Evdoxia Paroutoglou & Peter Fojan & Leonid Gurevich & Göran Hultmark & Alireza Afshari, 2021. "Thermal Analysis of Organic and Nanoencapsulated Electrospun Phase Change Materials," Energies, MDPI, vol. 14(4), pages 1-15, February.
- Cabeza, L.F. & Castell, A. & Barreneche, C. & de Gracia, A. & Fernández, A.I., 2011. "Materials used as PCM in thermal energy storage in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1675-1695, April.
- Hussain, Abid & Tso, C.Y. & Chao, Christopher Y.H., 2016. "Experimental investigation of a passive thermal management system for high-powered lithium ion batteries using nickel foam-paraffin composite," Energy, Elsevier, vol. 115(P1), pages 209-218.
- Buonomano, Annamaria & Guarino, Francesco, 2020. "The impact of thermophysical properties and hysteresis effects on the energy performance simulation of PCM wallboards: Experimental studies, modelling, and validation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).
- Li, Wenqiang & Zhang, Duo & Jing, Tingting & Gao, Mingyu & Liu, Peijin & He, Guoqiang & Qin, Fei, 2018. "Nano-encapsulated phase change material slurry (Nano-PCMS) saturated in metal foam: A new stable and efficient strategy for passive thermal management," Energy, Elsevier, vol. 165(PA), pages 743-751.
- Caliano, Martina & Bianco, Nicola & Graditi, Giorgio & Mongibello, Luigi, 2019. "Analysis of a phase change material-based unit and of an aluminum foam/phase change material composite-based unit for cold thermal energy storage by numerical simulation," Applied Energy, Elsevier, vol. 256(C).
- Yang, Xiaohu & Guo, Zengxu & Liu, Yanhua & Jin, Liwen & He, Ya-Ling, 2019. "Effect of inclination on the thermal response of composite phase change materials for thermal energy storage," Applied Energy, Elsevier, vol. 238(C), pages 22-33.
- Juan Duan & Yongliang Xiong & Dan Yang, 2019. "Melting Behavior of Phase Change Material in Honeycomb Structures with Different Geometrical Cores," Energies, MDPI, vol. 12(15), pages 1-19, July.
- Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
- Al-Maghalseh, Maher & Mahkamov, Khamid, 2018. "Methods of heat transfer intensification in PCM thermal storage systems: Review paper," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 62-94.
- Aramesh, M. & Shabani, B., 2020. "On the integration of phase change materials with evacuated tube solar thermal collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
- Kenisarin, Murat M., 2010. "High-temperature phase change materials for thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 955-970, April.
- Renato M Lazzarin & Simone Mancin & Marco Noro & Giulia Righetti, 2018. "Hybrid PCM—aluminium foams’ thermal storages: an experimental study," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 13(3), pages 286-291.
- Tian, Y. & Zhao, C.Y., 2011. "A numerical investigation of heat transfer in phase change materials (PCMs) embedded in porous metals," Energy, Elsevier, vol. 36(9), pages 5539-5546.
- Huanpei Zheng & Changhong Wang, 2017. "Numerical and Experimental Studies on the Heat Transfer Performance of Copper Foam Filled with Paraffin," Energies, MDPI, vol. 10(7), pages 1-13, July.
- Mahdi, Jasim M. & Nsofor, Emmanuel C., 2017. "Melting enhancement in triplex-tube latent heat energy storage system using nanoparticles-metal foam combination," Applied Energy, Elsevier, vol. 191(C), pages 22-34.
- Mohammad Javad Zarei & Hassan Bazai & Mohsen Sharifpur & Omid Mahian & Bahman Shabani, 2020. "The Effects of Fin Parameters on the Solidification of PCMs in a Fin-Enhanced Thermal Energy Storage System," Energies, MDPI, vol. 13(1), pages 1-20, January.
- Meng, Z.N. & Zhang, P., 2017. "Experimental and numerical investigation of a tube-in-tank latent thermal energy storage unit using composite PCM," Applied Energy, Elsevier, vol. 190(C), pages 524-539.
- Li, Wenqiang & Wan, Hao & Lou, Haijian & Fu, Yuliang & Qin, Fei & He, Guoqiang, 2017. "Enhanced thermal management with microencapsulated phase change material particles infiltrated in cellular metal foam," Energy, Elsevier, vol. 127(C), pages 671-679.
- Zhang, P. & Xiao, X. & Ma, Z.W., 2016. "A review of the composite phase change materials: Fabrication, characterization, mathematical modeling and application to performance enhancement," Applied Energy, Elsevier, vol. 165(C), pages 472-510.
- Khalilmoghadam, Pooria & Rajabi-Ghahnavieh, Abbas & Shafii, Mohammad Behshad, 2021. "A novel energy storage system for latent heat recovery in solar still using phase change material and pulsating heat pipe," Renewable Energy, Elsevier, vol. 163(C), pages 2115-2127.
- Zhang, P. & Meng, Z.N. & Zhu, H. & Wang, Y.L. & Peng, S.P., 2017. "Melting heat transfer characteristics of a composite phase change material fabricated by paraffin and metal foam," Applied Energy, Elsevier, vol. 185(P2), pages 1971-1983.
- Tan, Weng Cheong & Saw, Lip Huat & Thiam, Hui San & Xuan, Jin & Cai, Zuansi & Yew, Ming Chian, 2018. "Overview of porous media/metal foam application in fuel cells and solar power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 181-197.
- Naghavi, M.S. & Metselaar, H.S.C. & Ang, B.C. & Zamiri, G. & Esmailzadeh, A. & Nasiri-Tabrizi, B., 2021. "A critical assessment on synergistic improvement in PCM based thermal batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
- Yang, Jialin & Yang, Lijun & Xu, Chao & Du, Xiaoze, 2016. "Experimental study on enhancement of thermal energy storage with phase-change material," Applied Energy, Elsevier, vol. 169(C), pages 164-176.
- Yang, Xiaohu & Bai, Qingsong & Zhang, Qunli & Hu, Wenju & Jin, Liwen & Yan, Jinyue, 2018. "Thermal and economic analysis of charging and discharging characteristics of composite phase change materials for cold storage," Applied Energy, Elsevier, vol. 225(C), pages 585-599.
- Aramesh, Mohamad & Ghalebani, Mehdi & Kasaeian, Alibakhsh & Zamani, Hosein & Lorenzini, Giulio & Mahian, Omid & Wongwises, Somchai, 2019. "A review of recent advances in solar cooking technology," Renewable Energy, Elsevier, vol. 140(C), pages 419-435.
- Bahman Shabani & Manu Biju, 2015. "Theoretical Modelling Methods for Thermal Management of Batteries," Energies, MDPI, vol. 8(9), pages 1-25, September.
- Randeep Singh & Sadegh Sadeghi & Bahman Shabani, 2018. "Thermal Conductivity Enhancement of Phase Change Materials for Low-Temperature Thermal Energy Storage Applications," Energies, MDPI, vol. 12(1), pages 1-20, December.
- Xiao, X. & Zhang, P. & Li, M., 2013. "Preparation and thermal characterization of paraffin/metal foam composite phase change material," Applied Energy, Elsevier, vol. 112(C), pages 1357-1366.
- Yang, Xiaohu & Wei, Pan & Cui, Xin & Jin, Liwen & He, Ya-Ling, 2019. "Thermal response of annuli filled with metal foam for thermal energy storage: An experimental study," Applied Energy, Elsevier, vol. 250(C), pages 1457-1467.
- Sharma, Atul & Tyagi, V.V. & Chen, C.R. & Buddhi, D., 2009. "Review on thermal energy storage with phase change materials and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(2), pages 318-345, February.
- Mahdi, Jasim M. & Nsofor, Emmanuel C., 2017. "Solidification enhancement in a triplex-tube latent heat energy storage system using nanoparticles-metal foam combination," Energy, Elsevier, vol. 126(C), pages 501-512.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Hu, Haitao & Zhao, Yaxin & Li, Yuhan, 2023. "Research progress on flow and heat transfer characteristics of fluids in metal foams," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
- Yang, Chao & Xu, Xing-Rong & Bake, Maitiniyazi & Wu, Chun-Mei & Li, You-Rong & Zheng, Zhang-Jing & Yu, Jia-Jia, 2024. "Numerical investigation and optimization of the melting performance of latent heat thermal energy storage unit strengthened by graded metal foam and mechanical rotation," Renewable Energy, Elsevier, vol. 227(C).
- Xu, Yang & He, Chen & Chen, Yang & Sun, Yu & Yin, Hang & Zheng, Zhang-Jing, 2023. "Experimental and numerical study on the effect of the intelligent memory metal fin on the melting and solidification process of PCM," Renewable Energy, Elsevier, vol. 218(C).
- Hu, Yige & Wang, Hang & Chen, Hu & Ding, Yang & Liu, Changtian & Jiang, Feng & Ling, Xiang, 2023. "A novel hydrated salt-based phase change material for medium- and low-thermal energy storage," Energy, Elsevier, vol. 274(C).
- Zhang, Tao & Zhang, Kaifei & Liu, Fei & Zhao, Miao & Zhang, David Z., 2024. "Analysis of thermal storage behavior of composite phase change materials embedded with gradient-designed TPMS thermal conductivity enhancers: A numerical and experimental study," Applied Energy, Elsevier, vol. 358(C).
- Huang, Xinyu & Du, Zhao & Li, Yuanji & Li, Ze & Yang, Xiaohu & Li, Ming-Jia, 2024. "Optimal design on fin-metal foam hybrid structure for melting and solidification phase change storage: An experimental and numerical study," Energy, Elsevier, vol. 302(C).
- Zhang, Shengqi & Pu, Liang & Mancin, Simone & Ma, Zhenjun & Xu, Lingling, 2022. "Experimental study on heat transfer characteristics of metal foam/paraffin composite PCMs in large cavities: Effects of material types and heating configurations," Applied Energy, Elsevier, vol. 325(C).
- Cui, Wei & Si, Tianyu & Li, Xiangxuan & Li, Xinyi & Lu, Lin & Ma, Ting & Wang, Qiuwang, 2022. "Heat transfer enhancement of phase change materials embedded with metal foam for thermal energy storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hamidi, E. & Ganesan, P.B. & Sharma, R.K. & Yong, K.W., 2023. "Computational study of heat transfer enhancement using porous foams with phase change materials: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
- Zhang, Shuai & Feng, Daili & Shi, Lei & Wang, Li & Jin, Yingai & Tian, Limei & Li, Ziyuan & Wang, Guoyong & Zhao, Lei & Yan, Yuying, 2021. "A review of phase change heat transfer in shape-stabilized phase change materials (ss-PCMs) based on porous supports for thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
- Liu, Yang & Zheng, Ruowei & Li, Ji, 2022. "High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
- Cui, Wei & Si, Tianyu & Li, Xiangxuan & Li, Xinyi & Lu, Lin & Ma, Ting & Wang, Qiuwang, 2022. "Heat transfer enhancement of phase change materials embedded with metal foam for thermal energy storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
- Joshi, Varun & Rathod, Manish K., 2019. "Thermal performance augmentation of metal foam infused phase change material using a partial filling strategy: An evaluation for fill height ratio and porosity," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
- Yang, Xiaohu & Yu, Jiabang & Guo, Zengxu & Jin, Liwen & He, Ya-Ling, 2019. "Role of porous metal foam on the heat transfer enhancement for a thermal energy storage tube," Applied Energy, Elsevier, vol. 239(C), pages 142-156.
- Kahwaji, Samer & Johnson, Michel B. & Kheirabadi, Ali C. & Groulx, Dominic & White, Mary Anne, 2018. "A comprehensive study of properties of paraffin phase change materials for solar thermal energy storage and thermal management applications," Energy, Elsevier, vol. 162(C), pages 1169-1182.
- Yang, Xiaohu & Wei, Pan & Wang, Xinyi & He, Ya-Ling, 2020. "Gradient design of pore parameters on the melting process in a thermal energy storage unit filled with open-cell metal foam," Applied Energy, Elsevier, vol. 268(C).
- Xu, Yang & Ren, Qinlong & Zheng, Zhang-Jing & He, Ya-Ling, 2017. "Evaluation and optimization of melting performance for a latent heat thermal energy storage unit partially filled with porous media," Applied Energy, Elsevier, vol. 193(C), pages 84-95.
- Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
- Sardari, Pouyan Talebizadeh & Mohammed, Hayder I. & Giddings, Donald & walker, Gavin S. & Gillott, Mark & Grant, David, 2019. "Numerical study of a multiple-segment metal foam-PCM latent heat storage unit: Effect of porosity, pore density and location of heat source," Energy, Elsevier, vol. 189(C).
- Beyne, W. & T'Jollyn, I. & Lecompte, S. & Cabeza, L.F. & De Paepe, M., 2023. "Standardised methods for the determination of key performance indicators for thermal energy storage heat exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
- Zhang, Shuai & Yan, Yuying, 2023. "Energy, exergy and economic analysis of ceramic foam-enhanced molten salt as phase change material for medium- and high-temperature thermal energy storage," Energy, Elsevier, vol. 262(PA).
- Caliano, Martina & Bianco, Nicola & Graditi, Giorgio & Mongibello, Luigi, 2019. "Analysis of a phase change material-based unit and of an aluminum foam/phase change material composite-based unit for cold thermal energy storage by numerical simulation," Applied Energy, Elsevier, vol. 256(C).
- Sardari, Pouyan Talebizadeh & Giddings, Donald & Grant, David & Gillott, Mark & Walker, Gavin S., 2020. "Discharge of a composite metal foam/phase change material to air heat exchanger for a domestic thermal storage unit," Renewable Energy, Elsevier, vol. 148(C), pages 987-1001.
- Zhang, Chunwei & Yu, Meng & Fan, Yubin & Zhang, Xuejun & Zhao, Yang & Qiu, Limin, 2020. "Numerical study on heat transfer enhancement of PCM using three combined methods based on heat pipe," Energy, Elsevier, vol. 195(C).
- Hashem Zadeh, Seyed Mohsen & Mehryan, S.A.M. & Ghalambaz, Mohammad & Ghodrat, Maryam & Young, John & Chamkha, Ali, 2020. "Hybrid thermal performance enhancement of a circular latent heat storage system by utilizing partially filled copper foam and Cu/GO nano-additives," Energy, Elsevier, vol. 213(C).
- Yang, Xiaohu & Guo, Zengxu & Liu, Yanhua & Jin, Liwen & He, Ya-Ling, 2019. "Effect of inclination on the thermal response of composite phase change materials for thermal energy storage," Applied Energy, Elsevier, vol. 238(C), pages 22-33.
- Huang, Xiang & Alva, Guruprasad & Jia, Yuting & Fang, Guiyin, 2017. "Morphological characterization and applications of phase change materials in thermal energy storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 128-145.
- Ewelina Radomska & Lukasz Mika & Karol Sztekler, 2020. "The Impact of Additives on the Main Properties of Phase Change Materials," Energies, MDPI, vol. 13(12), pages 1-34, June.
More about this item
Keywords
Phase change material; PCM; Heat storage; Metal foam; Heat transfer enhancement; Thermal performance;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:155:y:2022:i:c:s1364032121011849. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.