IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v224y2021ics0360544221003698.html
   My bibliography  Save this article

Transient thermal response of multi-walled carbon nanotube phase change materials in building walls

Author

Listed:
  • Sarrafha, Hamid
  • Kasaeian, Alibakhsh
  • Jahangir, Mohammad Hossein
  • Taylor, Robert A.

Abstract

The low thermal conductivity of organic phase change materials has hindered their widespread use in building applications. In this study, it is attempted to overcome this limitation by investigating the transient thermal performance of adding multi-walled carbon nanotube (MWCNT) to n-octadecane. As such, this macroencapsulated, nano-enhanced phase change material (NePCM) was located within a multi-layer wall and its heat transfer was simulated through to the roof and wall sides. The panel’s interior wall temperature distribution, the daily/seasonal charging/discharging cycle, and the effect of the MWCNT’s aspect ratio variation on thermal performance were analysed for a range of weather conditions. The acquired results showed that increasing the PCM’s thermal conductivity, by MWCNT addition, yields a preferable outcome regarding thermal comfort in the selected winter and autumn days, but not on the summer days. By adding 3 wt% of MWCNT, the panel’s latent heat activation increased by 50.1%, 18.5%, and 39.7% for summer, autumn, and winter days, respectively. Furthermore, increasing the MWCNT’s aspect ratio showed a noticeable enhancement effect on the thermal conductivity, until a limit for NePCMs, with a higher nanotube concentration.

Suggested Citation

  • Sarrafha, Hamid & Kasaeian, Alibakhsh & Jahangir, Mohammad Hossein & Taylor, Robert A., 2021. "Transient thermal response of multi-walled carbon nanotube phase change materials in building walls," Energy, Elsevier, vol. 224(C).
  • Handle: RePEc:eee:energy:v:224:y:2021:i:c:s0360544221003698
    DOI: 10.1016/j.energy.2021.120120
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221003698
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120120?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qiu, Lin & Ouyang, Yuxin & Feng, Yanhui & Zhang, Xinxin, 2019. "Review on micro/nano phase change materials for solar thermal applications," Renewable Energy, Elsevier, vol. 140(C), pages 513-538.
    2. Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
    3. Ling, Haoshu & Wang, Liang & Chen, Chao & Chen, Haisheng, 2019. "Numerical investigations of optimal phase change material incorporated into ventilated walls," Energy, Elsevier, vol. 172(C), pages 1187-1197.
    4. Zhu, Na & Li, Shanshan & Hu, Pingfang & Lei, Fei & Deng, Renjie, 2019. "Numerical investigations on performance of phase change material Trombe wall in building," Energy, Elsevier, vol. 187(C).
    5. Saafi, Khawla & Daouas, Naouel, 2019. "Energy and cost efficiency of phase change materials integrated in building envelopes under Tunisia Mediterranean climate," Energy, Elsevier, vol. 187(C).
    6. Borreguero, Ana M. & Luz Sánchez, M. & Valverde, José Luis & Carmona, Manuel & Rodríguez, Juan F., 2011. "Thermal testing and numerical simulation of gypsum wallboards incorporated with different PCMs content," Applied Energy, Elsevier, vol. 88(3), pages 930-937, March.
    7. Biswas, Kaushik & Lu, Jue & Soroushian, Parviz & Shrestha, Som, 2014. "Combined experimental and numerical evaluation of a prototype nano-PCM enhanced wallboard," Applied Energy, Elsevier, vol. 131(C), pages 517-529.
    8. Ma, Zhenjun & Lin, Wenye & Sohel, M. Imroz, 2016. "Nano-enhanced phase change materials for improved building performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1256-1268.
    9. Jin, Xing & Medina, Mario A. & Zhang, Xiaosong, 2014. "On the placement of a phase change material thermal shield within the cavity of buildings walls for heat transfer rate reduction," Energy, Elsevier, vol. 73(C), pages 780-786.
    10. Saffari, Mohammad & de Gracia, Alvaro & Ushak, Svetlana & Cabeza, Luisa F., 2017. "Passive cooling of buildings with phase change materials using whole-building energy simulation tools: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1239-1255.
    11. Liu, Yan & Wang, Mengyuan & Cui, Hongzhi & Yang, Liu & Liu, Jiaping, 2020. "Micro-/macro-level optimization of phase change material panel in building envelope," Energy, Elsevier, vol. 195(C).
    12. Sun, Xiaoqin & Jovanovic, Jovana & Zhang, Yuan & Fan, Siyuan & Chu, Youhong & Mo, Yajing & Liao, Shuguang, 2019. "Use of encapsulated phase change materials in lightweight building walls for annual thermal regulation," Energy, Elsevier, vol. 180(C), pages 858-872.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin, Niangzhi & Li, Chuanchang & Zhang, Dongyao & Li, Yaxi & Chen, Jian, 2022. "Emerging phase change cold storage materials derived from sodium sulfate decahydrate," Energy, Elsevier, vol. 245(C).
    2. Maturo, Anthony & Buonomano, Annamaria & Athienitis, Andreas, 2022. "Design for energy flexibility in smart buildings through solar based and thermal storage systems: Modelling, simulation and control for the system optimization," Energy, Elsevier, vol. 260(C).
    3. Javad Mohammadpour & Ann Lee & Victoria Timchenko & Robert Taylor, 2022. "Nano-Enhanced Phase Change Materials for Thermal Energy Storage: A Bibliometric Analysis," Energies, MDPI, vol. 15(9), pages 1-14, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lamrani, B. & Johannes, K. & Kuznik, F., 2021. "Phase change materials integrated into building walls: An updated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    2. Gencel, Osman & Subasi, Serkan & Ustaoglu, Abid & Sarı, Ahmet & Marasli, Muhammed & Hekimoğlu, Gökhan & Kam, Erol, 2022. "Development, characterization and thermo-regulative performance of microencapsulated phase change material included-glass fiber reinforced foam concrete as novel thermal energy effective-building mate," Energy, Elsevier, vol. 257(C).
    3. Wang, Lu & Kong, Xiangfei & Ren, Jianlin & Fan, Man & Li, Han, 2022. "Novel hybrid composite phase change materials with high thermal performance based on aluminium nitride and nanocapsules," Energy, Elsevier, vol. 238(PB).
    4. Mahdi, Jasim M. & Mohammed, Hayder I. & Hashim, Emad T. & Talebizadehsardari, Pouyan & Nsofor, Emmanuel C., 2020. "Solidification enhancement with multiple PCMs, cascaded metal foam and nanoparticles in the shell-and-tube energy storage system," Applied Energy, Elsevier, vol. 257(C).
    5. Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
    6. Sun, Xiaoqin & Lin, Yian & Zhu, Ziyang & Li, Jie, 2022. "Optimized design of a distributed photovoltaic system in a building with phase change materials," Applied Energy, Elsevier, vol. 306(PA).
    7. Kenzhekhanov, Sultan & Memon, Shazim Ali & Adilkhanova, Indira, 2020. "Quantitative evaluation of thermal performance and energy saving potential of the building integrated with PCM in a subarctic climate," Energy, Elsevier, vol. 192(C).
    8. Zeyad Amin Al-Absi & Mohd Hafizal Mohd Isa & Mazran Ismail, 2020. "Phase Change Materials (PCMs) and Their Optimum Position in Building Walls," Sustainability, MDPI, vol. 12(4), pages 1-25, February.
    9. Wijesuriya, Sajith & Brandt, Matthew & Tabares-Velasco, Paulo Cesar, 2018. "Parametric analysis of a residential building with phase change material (PCM)-enhanced drywall, precooling, and variable electric rates in a hot and dry climate," Applied Energy, Elsevier, vol. 222(C), pages 497-514.
    10. Fateh Mebarek-Oudina & Ines Chabani, 2023. "Review on Nano Enhanced PCMs: Insight on nePCM Application in Thermal Management/Storage Systems," Energies, MDPI, vol. 16(3), pages 1-21, January.
    11. Matteo Dongellini & Paolo Valdiserri & Claudia Naldi & Gian Luca Morini, 2020. "The Role of Emitters, Heat Pump Size, and Building Massive Envelope Elements on the Seasonal Energy Performance of Heat Pump-Based Heating Systems," Energies, MDPI, vol. 13(19), pages 1-14, September.
    12. Yang, Sungwoong & Wi, Seunghwan & Park, Ji Hun & Cho, Hyun Mi & Kim, Sumin, 2020. "Framework for developing a building material property database using web crawling to improve the applicability of energy simulation tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    13. Barzin, Reza & Chen, John J.J. & Young, Brent R. & Farid, Mohammed M., 2015. "Application of PCM underfloor heating in combination with PCM wallboards for space heating using price based control system," Applied Energy, Elsevier, vol. 148(C), pages 39-48.
    14. Lizana, Jesus & de-Borja-Torrejon, Manuel & Barrios-Padura, Angela & Auer, Thomas & Chacartegui, Ricardo, 2019. "Passive cooling through phase change materials in buildings. A critical study of implementation alternatives," Applied Energy, Elsevier, vol. 254(C).
    15. Cui, Shuang & Kishore, Ravi Anant & Kolari, Pranvera & Zheng, Qiye & Kaur, Sumanjeet & Vidal, Judith & Jackson, Roderick, 2023. "Model-driven development of durable and scalable thermal energy storage materials for buildings," Energy, Elsevier, vol. 265(C).
    16. Jin, Xing & Hu, Huoyan & Shi, Xing & Zhou, Xin & Yang, Liu & Yin, Yonggao & Zhang, Xiaosong, 2018. "A new heat transfer model of phase change material based on energy asymmetry," Applied Energy, Elsevier, vol. 212(C), pages 1409-1416.
    17. Ren, Miao & Liu, Yushi & Gao, Xiaojian, 2020. "Incorporation of phase change material and carbon nanofibers into lightweight aggregate concrete for thermal energy regulation in buildings," Energy, Elsevier, vol. 197(C).
    18. Ye, Rongda & Lin, Wenzhu & Yuan, Kunjie & Fang, Xiaoming & Zhang, Zhengguo, 2017. "Experimental and numerical investigations on the thermal performance of building plane containing CaCl2·6H2O/expanded graphite composite phase change material," Applied Energy, Elsevier, vol. 193(C), pages 325-335.
    19. Mukhamet, Tileuzhan & Kobeyev, Sultan & Nadeem, Abid & Memon, Shazim Ali, 2021. "Ranking PCMs for building façade applications using multi-criteria decision-making tools combined with energy simulations," Energy, Elsevier, vol. 215(PB).
    20. Soares, N. & Santos, P. & Gervásio, H. & Costa, J.J. & Simões da Silva, L., 2017. "Energy efficiency and thermal performance of lightweight steel-framed (LSF) construction: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 194-209.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:224:y:2021:i:c:s0360544221003698. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.