IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i24p9362-d999688.html
   My bibliography  Save this article

Towards Software-Defined Protection, Automation, and Control in Power Systems: Concepts, State of the Art, and Future Challenges

Author

Listed:
  • Nadine Kabbara

    (EDF R&D, 91120 Palaiseau, France
    Copernicus Institute of Sustainable Development, Utrecht University, 3584 CB Utrecht, The Netherlands)

  • Mohand Ouamer Nait Belaid

    (EDF R&D, 91120 Palaiseau, France
    LIGM Lab, Gustave Eiffel University, 77420 Champs-sur-Marne, France)

  • Madeleine Gibescu

    (Copernicus Institute of Sustainable Development, Utrecht University, 3584 CB Utrecht, The Netherlands)

  • Luis Ramirez Camargo

    (Copernicus Institute of Sustainable Development, Utrecht University, 3584 CB Utrecht, The Netherlands)

  • Jerome Cantenot

    (EDF R&D, 91120 Palaiseau, France)

  • Thierry Coste

    (EDF R&D, 91120 Palaiseau, France)

  • Vincent Audebert

    (EDF R&D, 91120 Palaiseau, France)

  • Hugo Morais

    (Inesc-ID, 1049-001 Lisboa, Portugal)

Abstract

Nowadays, power systems’ Protection, Automation, and Control (PAC) functionalities are often deployed in different constrained devices (Intelligent Electronic Devices) following a coupled hardware/software design. However, with the increase in distributed energy resources, more customized controllers will be required. These devices have high operational and deployment costs with long development, testing, and complex upgrade cycles. Addressing these challenges requires that a ’revolution’ in power system PAC design takes place. Decoupling from hardware-dependent implementations by virtualizing the functionalities facilitates the transition from a traditional power grid into a software-defined smart grid. This article presents a survey of recent literature on software-defined PAC for power systems, covering the concepts, main academic works, industrial proof of concepts, and the latest standardization efforts in this rising area. Finally, we summarize the expected future technical, industrial, and standardization challenges and open research problems. It was observed that software-defined PAC systems have a promising potential that can be leveraged for future PAC and smart grid developments. Moreover, standardizations in virtual IED software development and deployments, configuration tools, performance benchmarking, and compliance testing using a dynamic, agile approach assuring interoperability are critical enablers.

Suggested Citation

  • Nadine Kabbara & Mohand Ouamer Nait Belaid & Madeleine Gibescu & Luis Ramirez Camargo & Jerome Cantenot & Thierry Coste & Vincent Audebert & Hugo Morais, 2022. "Towards Software-Defined Protection, Automation, and Control in Power Systems: Concepts, State of the Art, and Future Challenges," Energies, MDPI, vol. 15(24), pages 1-27, December.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9362-:d:999688
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/24/9362/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/24/9362/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shadi Attarha & Anand Narayan & Batoul Hage Hassan & Carsten Krüger & Felipe Castro & Davood Babazadeh & Sebastian Lehnhoff, 2020. "Virtualization Management Concept for Flexible and Fault-Tolerant Smart Grid Service Provision," Energies, MDPI, vol. 13(9), pages 1-16, May.
    2. Shaukat, N. & Ali, S.M. & Mehmood, C.A. & Khan, B. & Jawad, M. & Farid, U. & Ullah, Z. & Anwar, S.M. & Majid, M., 2018. "A survey on consumers empowerment, communication technologies, and renewable generation penetration within Smart Grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1453-1475.
    3. Lilia Tightiz & Hyosik Yang, 2020. "A Comprehensive Review on IoT Protocols’ Features in Smart Grid Communication," Energies, MDPI, vol. 13(11), pages 1-24, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hubert Szczepaniuk & Edyta Karolina Szczepaniuk, 2022. "Applications of Artificial Intelligence Algorithms in the Energy Sector," Energies, MDPI, vol. 16(1), pages 1-24, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmad, Tanveer & Madonski, Rafal & Zhang, Dongdong & Huang, Chao & Mujeeb, Asad, 2022. "Data-driven probabilistic machine learning in sustainable smart energy/smart energy systems: Key developments, challenges, and future research opportunities in the context of smart grid paradigm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    2. Shuo Chen & Falko Ebe & Jeromie Morris & Heiko Lorenz & Christoph Kondzialka & Gerd Heilscher, 2022. "Implementation and Test of an IEC 61850-Based Automation Framework for the Automated Data Model Integration of DES (ADMID) into DSO SCADA," Energies, MDPI, vol. 15(4), pages 1-30, February.
    3. José Adriano da Costa & David Alves Castelo Branco & Max Chianca Pimentel Filho & Manoel Firmino de Medeiros Júnior & Neilton Fidelis da Silva, 2019. "Optimal Sizing of Photovoltaic Generation in Radial Distribution Systems Using Lagrange Multipliers," Energies, MDPI, vol. 12(9), pages 1-19, May.
    4. Dong, Lianxin & Fan, Shuai & Wang, Zhihua & Xiao, Jucheng & Zhou, Huan & Li, Zuyi & He, Guangyu, 2021. "An adaptive decentralized economic dispatch method for virtual power plant," Applied Energy, Elsevier, vol. 300(C).
    5. Francesca Ceglia & Elisa Marrasso & Samiran Samanta & Maurizio Sasso, 2022. "Addressing Energy Poverty in the Energy Community: Assessment of Energy, Environmental, Economic, and Social Benefits for an Italian Residential Case Study," Sustainability, MDPI, vol. 14(22), pages 1-22, November.
    6. Fan, Dongming & Ren, Yi & Feng, Qiang & Liu, Yiliu & Wang, Zili & Lin, Jing, 2021. "Restoration of smart grids: Current status, challenges, and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    7. Omowunmi Mary Longe & Khmaies Ouahada, 2018. "Mitigating Household Energy Poverty through Energy Expenditure Affordability Algorithm in a Smart Grid," Energies, MDPI, vol. 11(4), pages 1-17, April.
    8. Sheeraz Kirmani & Abdul Mazid & Irfan Ahmad Khan & Manaullah Abid, 2022. "A Survey on IoT-Enabled Smart Grids: Technologies, Architectures, Applications, and Challenges," Sustainability, MDPI, vol. 15(1), pages 1-26, December.
    9. Alanne, Kari & Cao, Sunliang, 2019. "An overview of the concept and technology of ubiquitous energy," Applied Energy, Elsevier, vol. 238(C), pages 284-302.
    10. Yousaf Murtaza Rind & Muhammad Haseeb Raza & Muhammad Zubair & Muhammad Qasim Mehmood & Yehia Massoud, 2023. "Smart Energy Meters for Smart Grids, an Internet of Things Perspective," Energies, MDPI, vol. 16(4), pages 1-35, February.
    11. Gackstetter, David & von Bloh, Malte & Hannus, Veronika & Meyer, Sebastian T. & Weisser, Wolfgang & Luksch, Claudia & Asseng, Senthold, 2023. "Autonomous field management – An enabler of sustainable future in agriculture," Agricultural Systems, Elsevier, vol. 206(C).
    12. Helder Pereira & Bruno Ribeiro & Luis Gomes & Zita Vale, 2022. "Smart Grid Ecosystem Modeling Using a Novel Framework for Heterogenous Agent Communities," Sustainability, MDPI, vol. 14(23), pages 1-20, November.
    13. Alvaro Llaria & Jessye Dos Santos & Guillaume Terrasson & Zina Boussaada & Christophe Merlo & Octavian Curea, 2021. "Intelligent Buildings in Smart Grids: A Survey on Security and Privacy Issues Related to Energy Management," Energies, MDPI, vol. 14(9), pages 1-37, May.
    14. Hwang, Hyunkyeong & Yoon, Ahyun & Yoon, Yongtae & Moon, Seungil, 2023. "Demand response of HVAC systems for hosting capacity improvement in distribution networks: A comprehensive review and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    15. Zhang, Chen & Li, Zhixin & Jiang, Haihua & Luo, Yongqiang & Xu, Shen, 2021. "Deep learning method for evaluating photovoltaic potential of urban land-use: A case study of Wuhan, China," Applied Energy, Elsevier, vol. 283(C).
    16. Xi He & Heng Dong & Wanli Yang & Wei Li, 2023. "Multi-Source Information Fusion Technology and Its Application in Smart Distribution Power System," Sustainability, MDPI, vol. 15(7), pages 1-16, April.
    17. Eunsung Oh & Sung-Yong Son, 2022. "Appropriate Technology-Based AMI Deployment in Multi-Dwelling Units," Energies, MDPI, vol. 15(4), pages 1-12, February.
    18. Arman Goudarzi & Farzad Ghayoor & Muhammad Waseem & Shah Fahad & Issa Traore, 2022. "A Survey on IoT-Enabled Smart Grids: Emerging, Applications, Challenges, and Outlook," Energies, MDPI, vol. 15(19), pages 1-32, September.
    19. Benjamin Schäfer & Thiemo Pesch & Debsankha Manik & Julian Gollenstede & Guosong Lin & Hans-Peter Beck & Dirk Witthaut & Marc Timme, 2022. "Understanding Braess’ Paradox in power grids," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    20. Lucas Deotti & Wanessa Guedes & Bruno Dias & Tiago Soares, 2020. "Technical and Economic Analysis of Battery Storage for Residential Solar Photovoltaic Systems in the Brazilian Regulatory Context," Energies, MDPI, vol. 13(24), pages 1-30, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9362-:d:999688. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.