IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i4p3470-d1067767.html
   My bibliography  Save this article

Generic Multi-Layered Digital-Twin-Framework-Enabled Asset Lifecycle Management for the Sustainable Mining Industry

Author

Listed:
  • Nabil El Bazi

    (Laboratory of Industrial Engineering (LGIIS), Faculty of Science and Technology, University Sultan Moulay Slimane (USMS), Beni Mellal 23000, Morocco
    Green Tech Institute (GTI), Mohammed VI Polytechnic University (UM6P), Benguerir 43150, Morocco)

  • Mustapha Mabrouki

    (Laboratory of Industrial Engineering (LGIIS), Faculty of Science and Technology, University Sultan Moulay Slimane (USMS), Beni Mellal 23000, Morocco)

  • Oussama Laayati

    (Green Tech Institute (GTI), Mohammed VI Polytechnic University (UM6P), Benguerir 43150, Morocco)

  • Nada Ouhabi

    (Green Tech Institute (GTI), Mohammed VI Polytechnic University (UM6P), Benguerir 43150, Morocco)

  • Hicham El Hadraoui

    (Green Tech Institute (GTI), Mohammed VI Polytechnic University (UM6P), Benguerir 43150, Morocco)

  • Fatima-Ezzahra Hammouch

    (Green Tech Institute (GTI), Mohammed VI Polytechnic University (UM6P), Benguerir 43150, Morocco)

  • Ahmed Chebak

    (Green Tech Institute (GTI), Mohammed VI Polytechnic University (UM6P), Benguerir 43150, Morocco)

Abstract

In the era of digitalization, many technologies are evolving, namely, the Internet of Things (IoT), big data, cloud computing, artificial intelligence (IA), and digital twin (DT) which has gained significant traction in a variety of sectors, including the mining industry. The use of DT in the mining industry is driven by its potential to improve efficiency, productivity, and sustainability by monitoring performance, simulating results, and predicting errors and yield. Additionally, the increasing demand for individualized products highlights the need for effective management of the entire product lifecycle, from design to development, modeling, simulating, prototyping, maintenance and troubleshooting, commissioning, targeting the market, use, and end-of-life. However, the problem to be overcome is how to successfully integrate DT into the mining business. This paper intends to shed light on the state of art of DT case studies focusing on concept, design, and development. The DT reference architecture model in Industry 4.0 and value-lifecycle-management-enabled DT are also discussed, and a proposition of a DT multi-layered architecture framework for the mining industry is explained to inspire future case studies.

Suggested Citation

  • Nabil El Bazi & Mustapha Mabrouki & Oussama Laayati & Nada Ouhabi & Hicham El Hadraoui & Fatima-Ezzahra Hammouch & Ahmed Chebak, 2023. "Generic Multi-Layered Digital-Twin-Framework-Enabled Asset Lifecycle Management for the Sustainable Mining Industry," Sustainability, MDPI, vol. 15(4), pages 1-24, February.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:4:p:3470-:d:1067767
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/4/3470/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/4/3470/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Adila El Maghraoui & Younes Ledmaoui & Oussama Laayati & Hicham El Hadraoui & Ahmed Chebak, 2022. "Smart Energy Management: A Comparative Study of Energy Consumption Forecasting Algorithms for an Experimental Open-Pit Mine," Energies, MDPI, vol. 15(13), pages 1-22, June.
    2. Oussama Laayati & Hicham El Hadraoui & Adila El Magharaoui & Nabil El-Bazi & Mostafa Bouzi & Ahmed Chebak & Josep M. Guerrero, 2022. "An AI-Layered with Multi-Agent Systems Architecture for Prognostics Health Management of Smart Transformers: A Novel Approach for Smart Grid-Ready Energy Management Systems," Energies, MDPI, vol. 15(19), pages 1-28, October.
    3. Ahmed Saad & Samy Faddel & Osama Mohammed, 2020. "IoT-Based Digital Twin for Energy Cyber-Physical Systems: Design and Implementation," Energies, MDPI, vol. 13(18), pages 1-21, September.
    4. Kamil Židek & Ján Piteľ & Milan Adámek & Peter Lazorík & Alexander Hošovský, 2020. "Digital Twin of Experimental Smart Manufacturing Assembly System for Industry 4.0 Concept," Sustainability, MDPI, vol. 12(9), pages 1-16, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ana Perišić & Ines Perišić & Branko Perišić, 2023. "Simulation-Based Engineering of Heterogeneous Collaborative Systems—A Novel Conceptual Framework," Sustainability, MDPI, vol. 15(11), pages 1-24, May.
    2. Han Peng & Songyin Li & Linjian Shangguan & Yisa Fan & Hai Zhang, 2023. "Analysis of Wind Turbine Equipment Failure and Intelligent Operation and Maintenance Research," Sustainability, MDPI, vol. 15(10), pages 1-35, May.
    3. Guoliang Shi & Zhansheng Liu & Dengzhou Xian & Rongtian Zhang, 2023. "Intelligent Assessment Method of Structural Reliability Driven by Carrying Capacity Sustainable Target: Taking Bearing Capacity as Criterion," Sustainability, MDPI, vol. 15(13), pages 1-18, July.
    4. Małgorzata Jasiulewicz-Kaczmarek & Katarzyna Antosz & Chao Zhang & Vitalii Ivanov, 2023. "Industry 4.0 Technologies for Sustainable Asset Life Cycle Management," Sustainability, MDPI, vol. 15(7), pages 1-7, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Issam A. R. Moghrabi & Sameer Ahmad Bhat & Piotr Szczuko & Rawan A. AlKhaled & Muneer Ahmad Dar, 2023. "Digital Transformation and Its Influence on Sustainable Manufacturing and Business Practices," Sustainability, MDPI, vol. 15(4), pages 1-35, February.
    2. Hubert Szczepaniuk & Edyta Karolina Szczepaniuk, 2022. "Applications of Artificial Intelligence Algorithms in the Energy Sector," Energies, MDPI, vol. 16(1), pages 1-24, December.
    3. Yen Sheng Tsai & Wei-Hsi Hung, 2023. "A low-cost intelligent tracking system for clothing manufacturers," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 473-491, February.
    4. Hicham El Hadraoui & Mourad Zegrari & Fatima-Ezzahra Hammouch & Nasr Guennouni & Oussama Laayati & Ahmed Chebak, 2022. "Design of a Customizable Test Bench of an Electric Vehicle Powertrain for Learning Purposes Using Model-Based System Engineering," Sustainability, MDPI, vol. 14(17), pages 1-22, September.
    5. Özden Tozanlı & Elif Kongar & Surendra M. Gupta, 2020. "Evaluation of Waste Electronic Product Trade-in Strategies in Predictive Twin Disassembly Systems in the Era of Blockchain," Sustainability, MDPI, vol. 12(13), pages 1-33, July.
    6. Ping Chen & Jiawei Gao & Zheng Ji & Han Liang & Yu Peng, 2022. "Do Artificial Intelligence Applications Affect Carbon Emission Performance?—Evidence from Panel Data Analysis of Chinese Cities," Energies, MDPI, vol. 15(15), pages 1-16, August.
    7. Hossein Omrany & Karam M. Al-Obaidi & Amreen Husain & Amirhosein Ghaffarianhoseini, 2023. "Digital Twins in the Construction Industry: A Comprehensive Review of Current Implementations, Enabling Technologies, and Future Directions," Sustainability, MDPI, vol. 15(14), pages 1-26, July.
    8. Archana Saxena & Rajesh Singh & Anita Gehlot & Shaik Vaseem Akram & Bhekisipho Twala & Aman Singh & Elisabeth Caro Montero & Neeraj Priyadarshi, 2022. "Technologies Empowered Environmental, Social, and Governance (ESG): An Industry 4.0 Landscape," Sustainability, MDPI, vol. 15(1), pages 1-17, December.
    9. Sun, YongTeng & Ma, HongZhong, 2024. "Research progress on oil-immersed transformer mechanical condition identification based on vibration signals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    10. Remigiusz Iwańkowicz & Radosław Rutkowski, 2023. "Digital Twin of Shipbuilding Process in Shipyard 4.0," Sustainability, MDPI, vol. 15(12), pages 1-27, June.
    11. Justyna Smagowicz & Cezary Szwed & Dawid Dąbal & Pavel Scholz, 2022. "A Simulation Model of Power Demand Management by Manufacturing Enterprises under the Conditions of Energy Sector Transformation," Energies, MDPI, vol. 15(9), pages 1-27, April.
    12. Oussama Laayati & Hicham El Hadraoui & Adila El Magharaoui & Nabil El-Bazi & Mostafa Bouzi & Ahmed Chebak & Josep M. Guerrero, 2022. "An AI-Layered with Multi-Agent Systems Architecture for Prognostics Health Management of Smart Transformers: A Novel Approach for Smart Grid-Ready Energy Management Systems," Energies, MDPI, vol. 15(19), pages 1-28, October.
    13. Zhao Song & Christoph M. Hackl & Abhinav Anand & Andre Thommessen & Jonas Petzschmann & Omar Kamel & Robert Braunbehrens & Anton Kaifel & Christian Roos & Stefan Hauptmann, 2023. "Digital Twins for the Future Power System: An Overview and a Future Perspective," Sustainability, MDPI, vol. 15(6), pages 1-29, March.
    14. Adriana Grenčíková & Marcel Kordoš & Jozef Bartek & Vladislav Berkovič, 2021. "The Impact of the Industry 4.0 Concept on Slovak Business Sustainability within the Issue of the Pandemic Outbreak," Sustainability, MDPI, vol. 13(9), pages 1-14, April.
    15. Sri Nikhil Gupta Gourisetti & Sraddhanjoli Bhadra & David Jonathan Sebastian-Cardenas & Md Touhiduzzaman & Osman Ahmed, 2023. "A Theoretical Open Architecture Framework and Technology Stack for Digital Twins in Energy Sector Applications," Energies, MDPI, vol. 16(13), pages 1-58, June.
    16. Varaha Satra Bharath Kurukuru & Ahteshamul Haque & Mohammed Ali Khan & Subham Sahoo & Azra Malik & Frede Blaabjerg, 2021. "A Review on Artificial Intelligence Applications for Grid-Connected Solar Photovoltaic Systems," Energies, MDPI, vol. 14(15), pages 1-35, August.
    17. Cheng Qian & Xing Liu & Colin Ripley & Mian Qian & Fan Liang & Wei Yu, 2022. "Digital Twin—Cyber Replica of Physical Things: Architecture, Applications and Future Research Directions," Future Internet, MDPI, vol. 14(2), pages 1-25, February.
    18. Hyang-A Park & Gilsung Byeon & Wanbin Son & Hyung-Chul Jo & Jongyul Kim & Sungshin Kim, 2020. "Digital Twin for Operation of Microgrid: Optimal Scheduling in Virtual Space of Digital Twin," Energies, MDPI, vol. 13(20), pages 1-15, October.
    19. Rong Xie & Muyan Chen & Weihuang Liu & Hongfei Jian & Yanjun Shi, 2021. "Digital Twin Technologies for Turbomachinery in a Life Cycle Perspective: A Review," Sustainability, MDPI, vol. 13(5), pages 1-22, February.
    20. Erdal Irmak & Ersan Kabalci & Yasin Kabalci, 2023. "Digital Transformation of Microgrids: A Review of Design, Operation, Optimization, and Cybersecurity," Energies, MDPI, vol. 16(12), pages 1-58, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:4:p:3470-:d:1067767. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.