IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i19p7217-d931096.html
   My bibliography  Save this article

An AI-Layered with Multi-Agent Systems Architecture for Prognostics Health Management of Smart Transformers: A Novel Approach for Smart Grid-Ready Energy Management Systems

Author

Listed:
  • Oussama Laayati

    (Computer Science, Mechanical, Electronics and Telecommunication Laboratory (LMIET), Faculty of Sciences and Techniques (FST), Hassan First University of Settat (UH1), Settat 26000, Morocco
    Green Tech Institute (GTI), Mohammed VI Polytechnic University (UM6P), Benguerir 43150, Morocco)

  • Hicham El Hadraoui

    (Green Tech Institute (GTI), Mohammed VI Polytechnic University (UM6P), Benguerir 43150, Morocco)

  • Adila El Magharaoui

    (Green Tech Institute (GTI), Mohammed VI Polytechnic University (UM6P), Benguerir 43150, Morocco)

  • Nabil El-Bazi

    (Green Tech Institute (GTI), Mohammed VI Polytechnic University (UM6P), Benguerir 43150, Morocco)

  • Mostafa Bouzi

    (Computer Science, Mechanical, Electronics and Telecommunication Laboratory (LMIET), Faculty of Sciences and Techniques (FST), Hassan First University of Settat (UH1), Settat 26000, Morocco)

  • Ahmed Chebak

    (Green Tech Institute (GTI), Mohammed VI Polytechnic University (UM6P), Benguerir 43150, Morocco)

  • Josep M. Guerrero

    (Center for Research on Microgrids (CROM), AAU Energy, Aalborg University, 9220 Aalborg, Denmark)

Abstract

After the massive integration of distributed energy resources, energy storage systems and the charging stations of electric vehicles, it has become very difficult to implement an efficient grid energy management system regarding the unmanageable behavior of the power flow within the grid, which can cause many critical problems in different grid stages, typically in the substations, such as failures, blackouts, and power transformer explosions. However, the current digital transition toward Energy 4.0 in Smart Grids allows the integration of smart solutions to substations by integrating smart sensors and implementing new control and monitoring techniques. This paper is proposing a hybrid artificial intelligence multilayer for power transformers, integrating different diagnostic algorithms, Health Index, and life-loss estimation approaches. After gathering different datasets, this paper presents an exhaustive algorithm comparative study to select the best fit models. This developed architecture for prognostic (PHM) health management is a hybrid interaction between evolutionary support vector machine, random forest, k-nearest neighbor, and linear regression-based models connected to an online monitoring system of the power transformer; these interactions are calculating the important key performance indicators which are related to alarms and a smart energy management system that gives decisions on the load management, the power factor control, and the maintenance schedule planning.

Suggested Citation

  • Oussama Laayati & Hicham El Hadraoui & Adila El Magharaoui & Nabil El-Bazi & Mostafa Bouzi & Ahmed Chebak & Josep M. Guerrero, 2022. "An AI-Layered with Multi-Agent Systems Architecture for Prognostics Health Management of Smart Transformers: A Novel Approach for Smart Grid-Ready Energy Management Systems," Energies, MDPI, vol. 15(19), pages 1-28, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7217-:d:931096
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/19/7217/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/19/7217/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Godina, Radu & Rodrigues, Eduardo M.G. & Matias, João C.O. & Catalão, João P.S., 2016. "Smart electric vehicle charging scheduler for overloading prevention of an industry client power distribution transformer," Applied Energy, Elsevier, vol. 178(C), pages 29-42.
    2. Issouf Fofana & Yazid Hadjadj, 2016. "Electrical-Based Diagnostic Techniques for Assessing Insulation Condition in Aged Transformers," Energies, MDPI, vol. 9(9), pages 1-26, August.
    3. Umar, Abdullah & Kumar, Deepak & Ghose, Tirthadip, 2022. "Blockchain-based decentralized energy intra-trading with battery storage flexibility in a community microgrid system," Applied Energy, Elsevier, vol. 322(C).
    4. Muhammad Sharil Yahaya & Norhafiz Azis & Mohd Zainal Abidin Ab Kadir & Jasronita Jasni & Mohd Hendra Hairi & Mohd Aizam Talib, 2017. "Estimation of Transformers Health Index Based on the Markov Chain," Energies, MDPI, vol. 10(11), pages 1-11, November.
    5. Adila El Maghraoui & Younes Ledmaoui & Oussama Laayati & Hicham El Hadraoui & Ahmed Chebak, 2022. "Smart Energy Management: A Comparative Study of Energy Consumption Forecasting Algorithms for an Experimental Open-Pit Mine," Energies, MDPI, vol. 15(13), pages 1-22, June.
    6. Oussama Laayati & Hicham El Hadraoui & Nasr Guennoui & Mostafa Bouzi & Ahmed Chebak, 2022. "Smart Energy Management System: Design of a Smart Grid Test Bench for Educational Purposes," Energies, MDPI, vol. 15(7), pages 1-31, April.
    7. Leonori, Stefano & Martino, Alessio & Frattale Mascioli, Fabio Massimo & Rizzi, Antonello, 2020. "Microgrid Energy Management Systems Design by Computational Intelligence Techniques," Applied Energy, Elsevier, vol. 277(C).
    8. Hazlee Azil Illias & Xin Rui Chai & Ab Halim Abu Bakar & Hazlie Mokhlis, 2015. "Transformer Incipient Fault Prediction Using Combined Artificial Neural Network and Various Particle Swarm Optimisation Techniques," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-16, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nabil El Bazi & Mustapha Mabrouki & Oussama Laayati & Nada Ouhabi & Hicham El Hadraoui & Fatima-Ezzahra Hammouch & Ahmed Chebak, 2023. "Generic Multi-Layered Digital-Twin-Framework-Enabled Asset Lifecycle Management for the Sustainable Mining Industry," Sustainability, MDPI, vol. 15(4), pages 1-24, February.
    2. Hubert Szczepaniuk & Edyta Karolina Szczepaniuk, 2022. "Applications of Artificial Intelligence Algorithms in the Energy Sector," Energies, MDPI, vol. 16(1), pages 1-24, December.
    3. Sun, YongTeng & Ma, HongZhong, 2024. "Research progress on oil-immersed transformer mechanical condition identification based on vibration signals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hicham El Hadraoui & Mourad Zegrari & Fatima-Ezzahra Hammouch & Nasr Guennouni & Oussama Laayati & Ahmed Chebak, 2022. "Design of a Customizable Test Bench of an Electric Vehicle Powertrain for Learning Purposes Using Model-Based System Engineering," Sustainability, MDPI, vol. 14(17), pages 1-22, September.
    2. Hanbo Zheng & Jiefeng Liu & Yiyi Zhang & Yijie Ma & Yang Shen & Xiaochen Zhen & Zilai Chen, 2018. "Effectiveness Analysis and Temperature Effect Mechanism on Chemical and Electrical-Based Transformer Insulation Diagnostic Parameters Obtained from PDC Data," Energies, MDPI, vol. 11(1), pages 1-17, January.
    3. Jiefeng Liu & Hanbo Zheng & Yiyi Zhang & Hua Wei & Ruijin Liao, 2017. "Grey Relational Analysis for Insulation Condition Assessment of Power Transformers Based Upon Conventional Dielectric Response Measurement," Energies, MDPI, vol. 10(10), pages 1-16, October.
    4. Luis Santiago Azuara-Grande & Santiago Arnaltes & Jaime Alonso-Martinez & Jose Luis Rodriguez-Amenedo, 2021. "Comparison of Two Energy Management System Strategies for Real-Time Operation of Isolated Hybrid Microgrids," Energies, MDPI, vol. 14(20), pages 1-15, October.
    5. Hongyan Nie & Xinlao Wei & Yonghong Wang & Qingguo Chen, 2018. "A Study of Electrical Aging of the Turn-to-Turn Oil-Paper Insulation in Transformers with a Step-Stress Method," Energies, MDPI, vol. 11(12), pages 1-16, November.
    6. Tong, Ziqiang & Mansouri, Seyed Amir & Huang, Shoujun & Rezaee Jordehi, Ahmad & Tostado-Véliz, Marcos, 2023. "The role of smart communities integrated with renewable energy resources, smart homes and electric vehicles in providing ancillary services: A tri-stage optimization mechanism," Applied Energy, Elsevier, vol. 351(C).
    7. Issouf Fofana & Yazid Hadjadj, 2018. "Power Transformer Diagnostics, Monitoring and Design Features," Energies, MDPI, vol. 11(12), pages 1-5, November.
    8. Janvier Sylvestre N’cho & Issouf Fofana, 2020. "Review of Fiber Optic Diagnostic Techniques for Power Transformers," Energies, MDPI, vol. 13(7), pages 1-24, April.
    9. Pawel Zukowski & Przemyslaw Rogalski & Vitalii Bondariev & Milan Sebok, 2022. "Diagnostics of High Water Content Paper-Oil Transformer Insulation Based on the Temperature and Frequency Dependencies of the Loss Tangent," Energies, MDPI, vol. 15(8), pages 1-16, April.
    10. João Mello & Cristina de Lorenzo & Fco. Alberto Campos & José Villar, 2023. "Pricing and Simulating Energy Transactions in Energy Communities," Energies, MDPI, vol. 16(4), pages 1-22, February.
    11. Nguyen Thanh Viet & Alla G. Kravets, 2022. "The New Method for Analyzing Technology Trends of Smart Energy Asset Performance Management," Energies, MDPI, vol. 15(18), pages 1-26, September.
    12. Xiaoqin Zhang & Hongbin Zhu & Bo Li & Ruihan Wu & Jun Jiang, 2022. "Power Transformer Diagnosis Based on Dissolved Gases Analysis and Copula Function," Energies, MDPI, vol. 15(12), pages 1-14, June.
    13. Sara Khan & Uzma Amin & Ahmed Abu-Siada, 2024. "P2P Energy Trading of EVs Using Blockchain Technology in Centralized and Decentralized Networks: A Review," Energies, MDPI, vol. 17(9), pages 1-17, April.
    14. Siti Rosilah Arsad & Pin Jern Ker & Md. Zaini Jamaludin & Pooi Ying Choong & Hui Jing Lee & Vimal Angela Thiviyanathan & Young Zaidey Yang Ghazali, 2023. "Water Content in Transformer Insulation System: A Review on the Detection and Quantification Methods," Energies, MDPI, vol. 16(4), pages 1-31, February.
    15. Ping Chen & Jiawei Gao & Zheng Ji & Han Liang & Yu Peng, 2022. "Do Artificial Intelligence Applications Affect Carbon Emission Performance?—Evidence from Panel Data Analysis of Chinese Cities," Energies, MDPI, vol. 15(15), pages 1-16, August.
    16. Hazlee Azil Illias & Wee Zhao Liang, 2018. "Identification of transformer fault based on dissolved gas analysis using hybrid support vector machine-modified evolutionary particle swarm optimisation," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-15, January.
    17. Barbara Antonioli Mantegazzini & C?dric Clastres & Laura Wangen, 2022. "Energy communities in Europe: An overview of issues and regulatory and economic solutions," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2022(2), pages 5-23.
    18. Ildar Daminov & Rémy Rigo-Mariani & Raphael Caire & Anton Prokhorov & Marie-Cécile Alvarez-Hérault, 2021. "Demand Response Coupled with Dynamic Thermal Rating for Increased Transformer Reserve and Lifetime," Energies, MDPI, vol. 14(5), pages 1-27, March.
    19. Zou, Wenke & Sun, Yongjun & Gao, Dian-ce & Zhang, Xu & Liu, Junyao, 2023. "A review on integration of surging plug-in electric vehicles charging in energy-flexible buildings: Impacts analysis, collaborative management technologies, and future perspective," Applied Energy, Elsevier, vol. 331(C).
    20. Sameh Mahjoub & Larbi Chrifi-Alaoui & Saïd Drid & Nabil Derbel, 2023. "Control and Implementation of an Energy Management Strategy for a PV–Wind–Battery Microgrid Based on an Intelligent Prediction Algorithm of Energy Production," Energies, MDPI, vol. 16(4), pages 1-26, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7217-:d:931096. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.