Real-World Data-Driven Machine-Learning-Based Optimal Sensor Selection Approach for Equipment Fault Detection in a Thermal Power Plant
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Vanya Van Belle & Ben Van Calster & Sabine Van Huffel & Johan A K Suykens & Paulo Lisboa, 2016. "Explaining Support Vector Machines: A Color Based Nomogram," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-33, October.
- Nick Guenther & Matthias Schonlau, 2016. "Support vector machines," Stata Journal, StataCorp LP, vol. 16(4), pages 917-937, December.
- Yuan, Jianjuan & Wang, Chendong & Zhou, Zhihua, 2019. "Study on refined control and prediction model of district heating station based on support vector machine," Energy, Elsevier, vol. 189(C).
- Yu, Jungwon & Yoo, Jaeyeong & Jang, Jaeyel & Park, June Ho & Kim, Sungshin, 2017. "A novel plugged tube detection and identification approach for final super heater in thermal power plant using principal component analysis," Energy, Elsevier, vol. 126(C), pages 404-418.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Prashant Kumar & Salman Khalid & Heung Soo Kim, 2023. "Prognostics and Health Management of Rotating Machinery of Industrial Robot with Deep Learning Applications—A Review," Mathematics, MDPI, vol. 11(13), pages 1-37, July.
- Li, Guolong & Li, Yanjun & Fang, Chengyue & Su, Jian & Wang, Haotong & Sun, Shengdi & Zhang, Guolei & Shi, Jianxin, 2023. "Research on fault diagnosis of supercharged boiler with limited data based on few-shot learning," Energy, Elsevier, vol. 281(C).
- Hubert Szczepaniuk & Edyta Karolina Szczepaniuk, 2022. "Applications of Artificial Intelligence Algorithms in the Energy Sector," Energies, MDPI, vol. 16(1), pages 1-24, December.
- Salman Khalid & Jinwoo Song & Muhammad Muzammil Azad & Muhammad Umar Elahi & Jaehun Lee & Soo-Ho Jo & Heung Soo Kim, 2023. "A Comprehensive Review of Emerging Trends in Aircraft Structural Prognostics and Health Management," Mathematics, MDPI, vol. 11(18), pages 1-42, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chris Reimann, 2024. "Predicting financial crises: an evaluation of machine learning algorithms and model explainability for early warning systems," Review of Evolutionary Political Economy, Springer, vol. 5(1), pages 51-83, June.
- Dario Sansone & Anna Zhu, 2023.
"Using Machine Learning to Create an Early Warning System for Welfare Recipients,"
Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(5), pages 959-992, October.
- Dario Sansone & Anna Zhu, 2020. "Using Machine Learning to Create an Early Warning System for Welfare Recipients," Papers 2011.12057, arXiv.org, revised May 2021.
- Sansone, Dario & Zhu, Anna, 2021. "Using Machine Learning to Create an Early Warning System for Welfare Recipients," IZA Discussion Papers 14377, Institute of Labor Economics (IZA).
- Roberson Andrea, 2021. "Applying Machine Learning for Automatic Product Categorization," Journal of Official Statistics, Sciendo, vol. 37(2), pages 395-410, June.
- Arthur C. Santos & Wesley A. Souza & Gustavo V. Barbara & Marcelo F. Castoldi & Alessandro Goedtel, 2023. "Diagnostics of Early Faults in Wind Generator Bearings Using Hjorth Parameters," Sustainability, MDPI, vol. 15(20), pages 1-17, October.
- Yi Yang & Yuting Bai & Xiaoyi Wang & Li Wang & Xuebo Jin & Qian Sun, 2020. "Group Decision-Making Support for Sustainable Governance of Algal Bloom in Urban Lakes," Sustainability, MDPI, vol. 12(4), pages 1-16, February.
- Achim Ahrens & Christian B. Hansen & Mark E. Schaffer, 2023.
"pystacked: Stacking generalization and machine learning in Stata,"
Stata Journal, StataCorp LP, vol. 23(4), pages 909-931, December.
- Achim Ahrens & Christian B. Hansen & Mark E. Schaffer, 2022. "pystacked: Stacking generalization and machine learning in Stata," Papers 2208.10896, arXiv.org, revised Mar 2023.
- Christian B. Hansen & Mark E. Schaffer & Achim Ahrens, 2022. "pystacked: Stacking generalization and machine learning in Stata," Swiss Stata Conference 2022 01, Stata Users Group.
- Yu, Baojun & Li, Changming & Mirza, Nawazish & Umar, Muhammad, 2022. "Forecasting credit ratings of decarbonized firms: Comparative assessment of machine learning models," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
- Li, Jing-Ping & Mirza, Nawazish & Rahat, Birjees & Xiong, Deping, 2020. "Machine learning and credit ratings prediction in the age of fourth industrial revolution," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
- Gründler, Klaus & Krieger, Tommy, 2021. "Using Machine Learning for measuring democracy: A practitioners guide and a new updated dataset for 186 countries from 1919 to 2019," European Journal of Political Economy, Elsevier, vol. 70(C).
- Na Tang & Maoxiang Yuan & Zhijun Chen & Jian Ma & Rui Sun & Yide Yang & Quanyuan He & Xiaowei Guo & Shixiong Hu & Junhua Zhou, 2023. "Machine Learning Prediction Model of Tuberculosis Incidence Based on Meteorological Factors and Air Pollutants," IJERPH, MDPI, vol. 20(5), pages 1-17, February.
- Sun, Chunhua & Liu, Yiting & Cao, Shanshan & Chen, Jiali & Xia, Guoqiang & Wu, Xiangdong, 2022. "Identification of control regularity of heating stations based on cross-correlation function dynamic time delay method," Energy, Elsevier, vol. 246(C).
- Hazlee Azil Illias & Wee Zhao Liang, 2018. "Identification of transformer fault based on dissolved gas analysis using hybrid support vector machine-modified evolutionary particle swarm optimisation," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-15, January.
- Zhang, Yunfei & Zhou, Zhihua & Liu, Junwei & Yuan, Jianjuan, 2022. "Data augmentation for improving heating load prediction of heating substation based on TimeGAN," Energy, Elsevier, vol. 260(C).
- Alkhaleel, Basem A., 2024. "Machine learning applications in the resilience of interdependent critical infrastructure systems—A systematic literature review," International Journal of Critical Infrastructure Protection, Elsevier, vol. 44(C).
- Yuan, Jianjuan & Huang, Ke & Han, Zhao & Zhou, Zhihua & Lu, Shilei, 2021. "A new feedback predictive model for improving the operation efficiency of heating station based on indoor temperature," Energy, Elsevier, vol. 222(C).
- McKenzie, David & Sansone, Dario, 2017.
"Man vs. Machine in Predicting Successful Entrepreneurs: Evidence from a Business Plan Competition in Nigeria,"
CEPR Discussion Papers
12523, C.E.P.R. Discussion Papers.
- Mckenzie,David J. & Sansone,Dario & Mckenzie,David J. & Sansone,Dario, 2017. "Man vs. machine in predicting successful entrepreneurs : evidence from a business plan competition in Nigeria," Policy Research Working Paper Series 8271, The World Bank.
- Yuan, Jianjuan & Huang, Ke & Lu, Shilei & Zhang, Ji & Han, Zhao & Zhou, Zhihua, 2022. "Analysis of influencing factors on heat consumption of large residential buildings with different occupancy rates-Tianjin case study," Energy, Elsevier, vol. 238(PC).
- Yuan, Jianjuan & Zhou, Zhihua & Huang, Ke & Han, Zhao & Wang, Chendong & Lu, Shilei, 2021. "Analysis and evaluation of the operation data for achieving an on-demand heating consumption prediction model of district heating substation," Energy, Elsevier, vol. 214(C).
- Yousefzadeh Barri, Elnaz & Farber, Steven & Jahanshahi, Hadi & Beyazit, Eda, 2022. "Understanding transit ridership in an equity context through a comparison of statistical and machine learning algorithms," Journal of Transport Geography, Elsevier, vol. 105(C).
- Truong-Ba, Huy & Cholette, Michael E. & Borghesani, Pietro & Ma, Lin & Kent, Geoff, 2021. "Condition-based inspection policies for boiler heat exchangers," European Journal of Operational Research, Elsevier, vol. 291(1), pages 232-243.
More about this item
Keywords
real-world data; data-driven machine learning; thermal power plant; optimal sensor selection; boiler water wall tube; turbine; fault detection;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:21:p:2814-:d:673086. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.