IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v270y2015icp165-178.html
   My bibliography  Save this article

Analysis of household electricity consumption behaviours: Impact of domestic electricity generation

Author

Listed:
  • Motlagh, Omid
  • Paevere, Phillip
  • Hong, Tang Sai
  • Grozev, George

Abstract

Adoption of renewable electricity generation technologies such as photovoltaic (PV) systems is at the early majority stage in most developed countries. Depending on solar capacity, applied feed-in tariff, and other factors, households exhibit different electricity consumption behaviours which can potentially assist in Demand Side Management (DSM) of electricity usage. This article presents three univariate analysis methods to infer deliberative behavioural patterns at households with solar electricity generation capacity. Analysis methods include qualitative Principal Component Analysis (PCA), unsupervised Hebbian-based clustering, and clustering using a semi-supervised Self-Organising Map (SOM). The techniques are individually applied to 300 sample households with rooftop PV panels operating under a Gross Metering (GM) scheme. According to the PCA, the dominant behaviours are often general among most households, and therefore reveal themselves on first and second principal components. However, on the third and fourth components some specific household behaviours related to load-shifting and self-consumption, are observed. The Hebbian model differentiates between at least eight behaviour types, some of which indicate deliberative behaviours by the households. Most effectively, SOM clustering clearly detects a self-consumption behaviour attributed to domestic electricity generation. A control group of 400 households is analysed to ensure uniqueness of the self-consumption behaviour to customers with solar PV installed. The techniques developed herein may be able to be used by electricity utilities to assess the influence that future tariff and technology offerings will have on behavioural aspects of customer electricity consumption.

Suggested Citation

  • Motlagh, Omid & Paevere, Phillip & Hong, Tang Sai & Grozev, George, 2015. "Analysis of household electricity consumption behaviours: Impact of domestic electricity generation," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 165-178.
  • Handle: RePEc:eee:apmaco:v:270:y:2015:i:c:p:165-178
    DOI: 10.1016/j.amc.2015.08.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S009630031501084X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2015.08.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Moura, Pedro S. & de Almeida, Aníbal T., 2010. "Multi-objective optimization of a mixed renewable system with demand-side management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(5), pages 1461-1468, June.
    2. Ren, Zhengen & Paevere, Phillip & McNamara, Cheryl, 2012. "A local-community-level, physically-based model of end-use energy consumption by Australian housing stock," Energy Policy, Elsevier, vol. 49(C), pages 586-596.
    3. Luis Hernández & Carlos Baladrón & Javier M. Aguiar & Belén Carro & Antonio Sánchez-Esguevillas, 2012. "Classification and Clustering of Electricity Demand Patterns in Industrial Parks," Energies, MDPI, vol. 5(12), pages 1-14, December.
    4. Lim, Xin-Le & Lam, Wei-Haur, 2014. "Public Acceptance of Marine Renewable Energy in Malaysia," Energy Policy, Elsevier, vol. 65(C), pages 16-26.
    5. A. Greening, Lorna & Greene, David L. & Difiglio, Carmen, 2000. "Energy efficiency and consumption -- the rebound effect -- a survey," Energy Policy, Elsevier, vol. 28(6-7), pages 389-401, June.
    6. Taylor, James W. & de Menezes, Lilian M. & McSharry, Patrick E., 2006. "A comparison of univariate methods for forecasting electricity demand up to a day ahead," International Journal of Forecasting, Elsevier, vol. 22(1), pages 1-16.
    7. Barros, Carlos Pestana & Gil-Alana, Luis A. & Payne, James E., 2013. "U.S. Disaggregated renewable energy consumption: Persistence and long memory behavior," Energy Economics, Elsevier, vol. 40(C), pages 425-432.
    8. Abdullah, M.A. & Agalgaonkar, A.P. & Muttaqi, K.M., 2013. "Probabilistic load flow incorporating correlation between time-varying electricity demand and renewable power generation," Renewable Energy, Elsevier, vol. 55(C), pages 532-543.
    9. Barnham, Keith & Knorr, Kaspar & Mazzer, Massimo, 2013. "Benefits of photovoltaic power in supplying national electricity demand," Energy Policy, Elsevier, vol. 54(C), pages 385-390.
    10. Vanhoudt, D. & Geysen, D. & Claessens, B. & Leemans, F. & Jespers, L. & Van Bael, J., 2014. "An actively controlled residential heat pump: Potential on peak shaving and maximization of self-consumption of renewable energy," Renewable Energy, Elsevier, vol. 63(C), pages 531-543.
    11. Higgins, Andrew & Grozev, George & Ren, Zhengen & Garner, Stephen & Walden, Glenn & Taylor, Michelle, 2014. "Modelling future uptake of distributed energy resources under alternative tariff structures," Energy, Elsevier, vol. 74(C), pages 455-463.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Lu & Xie, Pengli & Bi, Chongke & Zhang, Ronghui & Cai, Bowen & Shao, Xiaowei & Wang, Rongben, 2020. "Household power consumption pattern modeling through a single power sensor," Renewable Energy, Elsevier, vol. 155(C), pages 121-133.
    2. Li, Wenqiang & Gong, Guangcai & Fan, Houhua & Peng, Pei & Chun, Liang & Fang, Xi, 2021. "A clustering-based approach for “cross-scale” load prediction on building level in HVAC systems," Applied Energy, Elsevier, vol. 282(PB).
    3. Young, Sharon & Bruce, Anna & MacGill, Iain, 2019. "Potential impacts of residential PV and battery storage on Australia's electricity networks under different tariffs," Energy Policy, Elsevier, vol. 128(C), pages 616-627.
    4. Song, Kwonsik & Anderson, Kyle & Lee, SangHyun, 2020. "An energy-cyber-physical system for personalized normative messaging interventions: Identification and classification of behavioral reference groups," Applied Energy, Elsevier, vol. 260(C).
    5. Motlagh, Omid & Berry, Adam & O'Neil, Lachlan, 2019. "Clustering of residential electricity customers using load time series," Applied Energy, Elsevier, vol. 237(C), pages 11-24.
    6. Song, Kwonsik & Jang, Youjin & Park, Moonseo & Lee, Hyun-Soo & Ahn, Joseph, 2020. "Energy efficiency of end-user groups for personalized HVAC control in multi-zone buildings," Energy, Elsevier, vol. 206(C).
    7. Hubert Szczepaniuk & Edyta Karolina Szczepaniuk, 2022. "Applications of Artificial Intelligence Algorithms in the Energy Sector," Energies, MDPI, vol. 16(1), pages 1-24, December.
    8. Simona-Vasilica Oprea & Adela Bâra & Dan Preoțescu, 2019. "NoSQL Data Storage and Clustering Large Volume of Data from Smart Metering Systems with Impact on Electricity Consumption Peak and Tariff Settings," Ovidius University Annals, Economic Sciences Series, Ovidius University of Constantza, Faculty of Economic Sciences, vol. 0(2), pages 327-333, December.
    9. Kwonsik Song & Kyle Anderson & SangHyun Lee & Kaitlin T. Raimi & P. Sol Hart, 2020. "Non-Invasive Behavioral Reference Group Categorization Considering Temporal Granularity and Aggregation Level of Energy Use Data," Energies, MDPI, vol. 13(14), pages 1-21, July.
    10. Tang, Rui & Yildiz, Baran & Leong, Philip H.W. & Vassallo, Anthony & Dore, Jonathon, 2019. "Residential battery sizing model using net meter energy data clustering," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    11. Robbert Claeys & Hakim Azaioud & Rémy Cleenwerck & Jos Knockaert & Jan Desmet, 2020. "A Novel Feature Set for Low-Voltage Consumers, Based on the Temporal Dependence of Consumption and Peak Demands," Energies, MDPI, vol. 14(1), pages 1-24, December.
    12. Ross C. Beppler & Daniel C. Matisoff & Matthew E. Oliver, 2023. "Electricity consumption changes following solar adoption: Testing for a solar rebound," Economic Inquiry, Western Economic Association International, vol. 61(1), pages 58-81, January.
    13. Chen, X.P. & Hewitt, N. & Li, Z.T. & Wu, Q.M. & Yuan, Xufeng & Roskilly, Tony, 2017. "Dynamic programming for optimal operation of a biofuel micro CHP-HES system," Applied Energy, Elsevier, vol. 208(C), pages 132-141.
    14. Peter M. Schwarz, Nathan Duma, and Ercument Camadan, 2023. "Compensating Solar Prosumers Using Buy-All, Sell-All as an Alternative to Net Metering and Net Purchasing: Total Use, Rebound, and Cross Subsidization," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    15. Salah Bouktif & Ali Ouni & Sanja Lazarova-Molnar, 2022. "Towards a Rigorous Consideration of Occupant Behaviours of Residential Households for Effective Electrical Energy Savings: An Overview," Energies, MDPI, vol. 15(5), pages 1-30, February.
    16. Frondel, Manuel & Kaestner, Kathrin & Sommer, Stephan & Vance, Colin, 2022. "Photovoltaics and the solar rebound: Evidence for Germany," Ruhr Economic Papers 954, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Motlagh, Omid & Berry, Adam & O'Neil, Lachlan, 2019. "Clustering of residential electricity customers using load time series," Applied Energy, Elsevier, vol. 237(C), pages 11-24.
    2. Karasoy, Alper, 2022. "Is innovative technology a solution to Japan's long-run energy insecurity? Dynamic evidence from the linear and nonlinear methods," Technology in Society, Elsevier, vol. 70(C).
    3. Kaika, Dimitra & Zervas, Efthimios, 2013. "The environmental Kuznets curve (EKC) theory. Part B: Critical issues," Energy Policy, Elsevier, vol. 62(C), pages 1403-1411.
    4. Jonathan M. Lee, 2015. "The Impact of Heterogeneous NOx Regulations on Distributed Electricity Generation in U.S. Manufacturing," Working Papers 15-12, Center for Economic Studies, U.S. Census Bureau.
    5. De Borger, Bruno & Mulalic, Ismir & Rouwendal, Jan, 2016. "Measuring the rebound effect with micro data: A first difference approach," Journal of Environmental Economics and Management, Elsevier, vol. 79(C), pages 1-17.
    6. Kelly, Scott & Shipworth, Michelle & Shipworth, David & Gentry, Michael & Wright, Andrew & Pollitt, Michael & Crawford-Brown, Doug & Lomas, Kevin, 2013. "Predicting the diversity of internal temperatures from the English residential sector using panel methods," Applied Energy, Elsevier, vol. 102(C), pages 601-621.
    7. Katris, Antonios & Turner, Karen, 2021. "Can different approaches to funding household energy efficiency deliver on economic and social policy objectives? ECO and alternatives in the UK," Energy Policy, Elsevier, vol. 155(C).
    8. Kurt Kratena & Ina Meyer & Mark Sommer, 2013. "Energy Scenarios 2030. Model Projections of Energy Demand as a Basis to Quantify Austria's Greenhouse Gas Emissions," WIFO Studies, WIFO, number 46702.
    9. Yunyun Wu & Xiaochun Li, 2024. "Industrial technological progress, technology spillover, and the environment in a dual agricultural economy," International Journal of Economic Theory, The International Society for Economic Theory, vol. 20(2), pages 243-266, June.
    10. Reza Fachrizal & Joakim Munkhammar, 2020. "Improved Photovoltaic Self-Consumption in Residential Buildings with Distributed and Centralized Smart Charging of Electric Vehicles," Energies, MDPI, vol. 13(5), pages 1-19, March.
    11. Alcott, Blake, 2008. "The sufficiency strategy: Would rich-world frugality lower environmental impact," Ecological Economics, Elsevier, vol. 64(4), pages 770-786, February.
    12. V. Oikonomou & C. Jepma, 2008. "A framework on interactions of climate and energy policy instruments," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 13(2), pages 131-156, February.
    13. Karen Turner, 2013. ""Rebound" Effects from Increased Energy Efficiency: A Time to Pause and Reflect," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    14. Zolnik, Edmund J., 2012. "Estimates of statewide and nationwide carbon dioxide emission reductions and their costs from Cash for Clunkers," Journal of Transport Geography, Elsevier, vol. 24(C), pages 271-281.
    15. Qizhen Wang & Rong Wang & Suxia Liu, 2024. "The reverse technology spillover effect of outward foreign direct investment, energy efficiency and carbon emissions," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(7), pages 17013-17035, July.
    16. Deng, S. & Wang, R.Z. & Dai, Y.J., 2014. "How to evaluate performance of net zero energy building – A literature research," Energy, Elsevier, vol. 71(C), pages 1-16.
    17. Raviv, Eran & Bouwman, Kees E. & van Dijk, Dick, 2015. "Forecasting day-ahead electricity prices: Utilizing hourly prices," Energy Economics, Elsevier, vol. 50(C), pages 227-239.
    18. Baharoon, Dhyia Aidroos & Rahman, Hasimah Abdul & Fadhl, Saeed Obaid, 2016. "Publics׳ knowledge, attitudes and behavioral toward the use of solar energy in Yemen power sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 498-515.
    19. Papafragkou, Anastasios & Ghosh, Siddhartha & James, Patrick A.B. & Rogers, Alex & Bahaj, AbuBakr S., 2014. "A simple, scalable and low-cost method to generate thermal diagnostics of a domestic building," Applied Energy, Elsevier, vol. 134(C), pages 519-530.
    20. Prusty, B Rajanarayan & Jena, Debashisha, 2017. "A critical review on probabilistic load flow studies in uncertainty constrained power systems with photovoltaic generation and a new approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1286-1302.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:270:y:2015:i:c:p:165-178. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.