IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i22p8693-d977673.html
   My bibliography  Save this article

Artificial Neural Network for Fault Diagnosis of Solar Photovoltaic Systems: A Survey

Author

Listed:
  • Zixia Yuan

    (Guizhou Key Laboratory of Intelligent Technology in Power System, College of Electrical Engineering, Guizhou University, Guiyang 550025, China)

  • Guojiang Xiong

    (Guizhou Key Laboratory of Intelligent Technology in Power System, College of Electrical Engineering, Guizhou University, Guiyang 550025, China)

  • Xiaofan Fu

    (Guizhou Key Laboratory of Intelligent Technology in Power System, College of Electrical Engineering, Guizhou University, Guiyang 550025, China)

Abstract

Solar energy is one of the most important renewable energy sources. Photovoltaic (PV) systems, as the most crucial conversion medium for solar energy, have been widely used in recent decades. For PV systems, faults that occur during operation need to be diagnosed and dealt with in a timely manner to ensure the reliability and efficiency of energy conversion. Therefore, an effective fault diagnosis method is essential. Artificial neural networks, a pivotal technique of artificial intelligence, have been developed and applied in many fields including the fault diagnosis of PV systems, due to their strong self-learning ability, good generalization performance, and high fault tolerance. This study reviews the recent research progress of ANN in PV system fault diagnosis. Different widely used ANN models, including MLP, PNN, RBF, CNN, and SAE, are discussed. Moreover, the input attributes of ANN models, the types of faults, and the diagnostic performance of ANN models are surveyed. Finally, the main challenges and development trends of ANN applied to the fault diagnosis of PV systems are outlined. This work can be used as a reference to study the application of ANN in the field of PV system fault diagnosis.

Suggested Citation

  • Zixia Yuan & Guojiang Xiong & Xiaofan Fu, 2022. "Artificial Neural Network for Fault Diagnosis of Solar Photovoltaic Systems: A Survey," Energies, MDPI, vol. 15(22), pages 1-18, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8693-:d:977673
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/22/8693/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/22/8693/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tsanakas, John A. & Ha, Long D. & Al Shakarchi, F., 2017. "Advanced inspection of photovoltaic installations by aerial triangulation and terrestrial georeferencing of thermal/visual imagery," Renewable Energy, Elsevier, vol. 102(PA), pages 224-233.
    2. Mellit, A. & Benghanem, M. & Arab, A. Hadj & Guessoum, A., 2005. "An adaptive artificial neural network model for sizing stand-alone photovoltaic systems: application for isolated sites in Algeria," Renewable Energy, Elsevier, vol. 30(10), pages 1501-1524.
    3. Guojiang Xiong & Dongyuan Shi & Lin Zhu & Xianzhong Duan, 2013. "A New Approach to Fault Diagnosis of Power Systems Using Fuzzy Reasoning Spiking Neural P Systems," Mathematical Problems in Engineering, Hindawi, vol. 2013, pages 1-13, June.
    4. Ajagekar, Akshay & You, Fengqi, 2021. "Quantum computing based hybrid deep learning for fault diagnosis in electrical power systems," Applied Energy, Elsevier, vol. 303(C).
    5. Walter M. Villa-Acevedo & Jesús M. López-Lezama & Delia G. Colomé, 2020. "Voltage Stability Margin Index Estimation Using a Hybrid Kernel Extreme Learning Machine Approach," Energies, MDPI, vol. 13(4), pages 1-19, February.
    6. Muhammad Ahsan Zamee & Dongjun Won, 2020. "Novel Mode Adaptive Artificial Neural Network for Dynamic Learning: Application in Renewable Energy Sources Power Generation Prediction," Energies, MDPI, vol. 13(23), pages 1-29, December.
    7. Rico Espinosa, Alejandro & Bressan, Michael & Giraldo, Luis Felipe, 2020. "Failure signature classification in solar photovoltaic plants using RGB images and convolutional neural networks," Renewable Energy, Elsevier, vol. 162(C), pages 249-256.
    8. Walter Gil-González & Oscar Danilo Montoya & Luis Fernando Grisales-Noreña & Fernando Cruz-Peragón & Gerardo Alcalá, 2020. "Economic Dispatch of Renewable Generators and BESS in DC Microgrids Using Second-Order Cone Optimization," Energies, MDPI, vol. 13(7), pages 1-15, April.
    9. Xiong, Guojiang & Shuai, Maohang & Hu, Xiao, 2022. "Combined heat and power economic emission dispatch using improved bare-bone multi-objective particle swarm optimization," Energy, Elsevier, vol. 244(PB).
    10. Fathi Troudi & Houda Jouini & Abdelkader Mami & Nidhal Ben Khedher & Walid Aich & Attia Boudjemline & Mohamed Boujelbene, 2022. "Comparative Assessment between Five Control Techniques to Optimize the Maximum Power Point Tracking Procedure for PV Systems," Mathematics, MDPI, vol. 10(7), pages 1-15, March.
    11. Mehdi Seyedmahmoudian & Tey Kok Soon & Elmira Jamei & Gokul Sidarth Thirunavukkarasu & Ben Horan & Saad Mekhilef & Alex Stojcevski, 2018. "Maximum Power Point Tracking for Photovoltaic Systems under Partial Shading Conditions Using Bat Algorithm," Sustainability, MDPI, vol. 10(5), pages 1-16, April.
    12. Hussain, Muhammed & Dhimish, Mahmoud & Titarenko, Sofya & Mather, Peter, 2020. "Artificial neural network based photovoltaic fault detection algorithm integrating two bi-directional input parameters," Renewable Energy, Elsevier, vol. 155(C), pages 1272-1292.
    13. Ghritlahre, Harish Kumar & Prasad, Radha Krishna, 2018. "Application of ANN technique to predict the performance of solar collector systems - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 75-88.
    14. Pillai, Dhanup S. & Rajasekar, N., 2018. "A comprehensive review on protection challenges and fault diagnosis in PV systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 18-40.
    15. Liu, Haizhou & Shen, Xinwei & Guo, Qinglai & Sun, Hongbin, 2021. "A data-driven approach towards fast economic dispatch in electricity–gas coupled systems based on artificial neural network," Applied Energy, Elsevier, vol. 286(C).
    16. Chine, W. & Mellit, A. & Lughi, V. & Malek, A. & Sulligoi, G. & Massi Pavan, A., 2016. "A novel fault diagnosis technique for photovoltaic systems based on artificial neural networks," Renewable Energy, Elsevier, vol. 90(C), pages 501-512.
    17. Nam, KiJeon & Hwangbo, Soonho & Yoo, ChangKyoo, 2020. "A deep learning-based forecasting model for renewable energy scenarios to guide sustainable energy policy: A case study of Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 122(C).
    18. Chen, Zhicong & Wu, Lijun & Cheng, Shuying & Lin, Peijie & Wu, Yue & Lin, Wencheng, 2017. "Intelligent fault diagnosis of photovoltaic arrays based on optimized kernel extreme learning machine and I-V characteristics," Applied Energy, Elsevier, vol. 204(C), pages 912-931.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paweł Pijarski & Adrian Belowski, 2024. "Application of Methods Based on Artificial Intelligence and Optimisation in Power Engineering—Introduction to the Special Issue," Energies, MDPI, vol. 17(2), pages 1-42, January.
    2. Naamane Debdouche & Brahim Deffaf & Habib Benbouhenni & Zarour Laid & Mohamed I. Mosaad, 2023. "Direct Power Control for Three-Level Multifunctional Voltage Source Inverter of PV Systems Using a Simplified Super-Twisting Algorithm," Energies, MDPI, vol. 16(10), pages 1-32, May.
    3. Elias Roumpakias & Tassos Stamatelos, 2023. "Comparative Performance Analysis of a Grid-Connected Photovoltaic Plant in Central Greece after Several Years of Operation Using Neural Networks," Sustainability, MDPI, vol. 15(10), pages 1-26, May.
    4. Jun Su & Zhiyuan Zeng & Chaolong Tang & Zhiquan Liu & Tianyou Li, 2024. "A Photovoltaic Fault Diagnosis Method Integrating Photovoltaic Power Prediction and EWMA Control Chart," Energies, MDPI, vol. 17(17), pages 1-22, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, B. & Delpha, C. & Diallo, D. & Migan-Dubois, A., 2021. "Application of Artificial Neural Networks to photovoltaic fault detection and diagnosis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    2. Sairam, Seshapalli & Seshadhri, Subathra & Marafioti, Giancarlo & Srinivasan, Seshadhri & Mathisen, Geir & Bekiroglu, Korkut, 2022. "Edge-based Explainable Fault Detection Systems for photovoltaic panels on edge nodes," Renewable Energy, Elsevier, vol. 185(C), pages 1425-1440.
    3. Mellit, Adel & Kalogirou, Soteris, 2022. "Assessment of machine learning and ensemble methods for fault diagnosis of photovoltaic systems," Renewable Energy, Elsevier, vol. 184(C), pages 1074-1090.
    4. Mellit, A. & Tina, G.M. & Kalogirou, S.A., 2018. "Fault detection and diagnosis methods for photovoltaic systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1-17.
    5. Qamar Navid & Ahmed Hassan & Abbas Ahmad Fardoun & Rashad Ramzan & Abdulrahman Alraeesi, 2021. "Fault Diagnostic Methodologies for Utility-Scale Photovoltaic Power Plants: A State of the Art Review," Sustainability, MDPI, vol. 13(4), pages 1-22, February.
    6. Weiguo He & Deyang Yin & Kaifeng Zhang & Xiangwen Zhang & Jianyong Zheng, 2021. "Fault Detection and Diagnosis Method of Distributed Photovoltaic Array Based on Fine-Tuning Naive Bayesian Model," Energies, MDPI, vol. 14(14), pages 1-17, July.
    7. Van Gompel, Jonas & Spina, Domenico & Develder, Chris, 2023. "Cost-effective fault diagnosis of nearby photovoltaic systems using graph neural networks," Energy, Elsevier, vol. 266(C).
    8. Belaout, A. & Krim, F. & Mellit, A. & Talbi, B. & Arabi, A., 2018. "Multiclass adaptive neuro-fuzzy classifier and feature selection techniques for photovoltaic array fault detection and classification," Renewable Energy, Elsevier, vol. 127(C), pages 548-558.
    9. Fouad Suliman & Fatih Anayi & Michael Packianather, 2024. "Electrical Faults Analysis and Detection in Photovoltaic Arrays Based on Machine Learning Classifiers," Sustainability, MDPI, vol. 16(3), pages 1-29, January.
    10. Qu, Jiaqi & Sun, Qiang & Qian, Zheng & Wei, Lu & Zareipour, Hamidreza, 2024. "Fault diagnosis for PV arrays considering dust impact based on transformed graphical features of characteristic curves and convolutional neural network with CBAM modules," Applied Energy, Elsevier, vol. 355(C).
    11. Van Gompel, Jonas & Spina, Domenico & Develder, Chris, 2022. "Satellite based fault diagnosis of photovoltaic systems using recurrent neural networks," Applied Energy, Elsevier, vol. 305(C).
    12. Gong, Bin & An, Aimin & Shi, Yaoke & Zhang, Xuemin, 2024. "Fast fault detection method for photovoltaic arrays with adaptive deep multiscale feature enhancement," Applied Energy, Elsevier, vol. 353(PA).
    13. Kara Mostefa Khelil, Chérifa & Amrouche, Badia & Benyoucef, Abou soufiane & Kara, Kamel & Chouder, Aissa, 2020. "New Intelligent Fault Diagnosis (IFD) approach for grid-connected photovoltaic systems," Energy, Elsevier, vol. 211(C).
    14. Dimri, Neha & Tiwari, Arvind & Tiwari, G.N., 2019. "Comparative study of photovoltaic thermal (PVT) integrated thermoelectric cooler (TEC) fluid collectors," Renewable Energy, Elsevier, vol. 134(C), pages 343-356.
    15. Wang, Mengyuan & Xu, Xiaoyuan & Yan, Zheng, 2023. "Online fault diagnosis of PV array considering label errors based on distributionally robust logistic regression," Renewable Energy, Elsevier, vol. 203(C), pages 68-80.
    16. Li, Yuanliang & Ding, Kun & Zhang, Jingwei & Chen, Fudong & Chen, Xiang & Wu, Jiabing, 2019. "A fault diagnosis method for photovoltaic arrays based on fault parameters identification," Renewable Energy, Elsevier, vol. 143(C), pages 52-63.
    17. Noman Khan & Fath U Min Ullah & Ijaz Ul Haq & Samee Ullah Khan & Mi Young Lee & Sung Wook Baik, 2021. "AB-Net: A Novel Deep Learning Assisted Framework for Renewable Energy Generation Forecasting," Mathematics, MDPI, vol. 9(19), pages 1-18, October.
    18. Sunme Park & Soyeong Park & Myungsun Kim & Euiseok Hwang, 2020. "Clustering-Based Self-Imputation of Unlabeled Fault Data in a Fleet of Photovoltaic Generation Systems," Energies, MDPI, vol. 13(3), pages 1-16, February.
    19. Nien-Che Yang & Harun Ismail, 2022. "Voting-Based Ensemble Learning Algorithm for Fault Detection in Photovoltaic Systems under Different Weather Conditions," Mathematics, MDPI, vol. 10(2), pages 1-18, January.
    20. Zendehboudi, Sohrab & Rezaei, Nima & Lohi, Ali, 2018. "Applications of hybrid models in chemical, petroleum, and energy systems: A systematic review," Applied Energy, Elsevier, vol. 228(C), pages 2539-2566.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8693-:d:977673. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.