Voltage Stability Margin Index Estimation Using a Hybrid Kernel Extreme Learning Machine Approach
Author
Abstract
Suggested Citation
Download full text from publisher
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Oludamilare Bode Adewuyi & Komla A. Folly & David T. O. Oyedokun & Emmanuel Idowu Ogunwole, 2022. "Power System Voltage Stability Margin Estimation Using Adaptive Neuro-Fuzzy Inference System Enhanced with Particle Swarm Optimization," Sustainability, MDPI, vol. 14(22), pages 1-17, November.
- Qasem Abu Al-Haija & Abdallah A. Smadi & Mohammed F. Allehyani, 2021. "Meticulously Intelligent Identification System for Smart Grid Network Stability to Optimize Risk Management," Energies, MDPI, vol. 14(21), pages 1-19, October.
- Zixia Yuan & Guojiang Xiong & Xiaofan Fu, 2022. "Artificial Neural Network for Fault Diagnosis of Solar Photovoltaic Systems: A Survey," Energies, MDPI, vol. 15(22), pages 1-18, November.
- Alok Nath Yadav & Kirti Pal, 2022. "Demand side maximum loading limit ranking based on composite index using ANN," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(3), pages 1419-1429, June.
- Ifedayo Oladeji & Ramon Zamora & Tek Tjing Lie, 2021. "An Online Security Prediction and Control Framework for Modern Power Grids," Energies, MDPI, vol. 14(20), pages 1-27, October.
More about this item
Keywords
kernel extreme learning machine algorithm; machine learning techniques; near real time; voltage stability assessment; voltage stability index;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:4:p:857-:d:321131. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.