IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v303y2021ics030626192100996x.html
   My bibliography  Save this article

Quantum computing based hybrid deep learning for fault diagnosis in electrical power systems

Author

Listed:
  • Ajagekar, Akshay
  • You, Fengqi

Abstract

Quantum computing (QC) and deep learning have shown promise of supporting transformative advances and have recently gained popularity in a wide range of areas. This paper proposes a hybrid QC-based deep learning framework for fault diagnosis of electrical power systems that combine the feature extraction capabilities of conditional restricted Boltzmann machine with an efficient classification of deep networks. Computational challenges stemming from the complexities of such deep learning models are overcome by QC-based training methodologies that effectively leverage the complementary strengths of quantum assisted learning and classical training techniques. The proposed hybrid QC-based deep learning framework is tested on a simulated electrical power system with 30 buses and wide variations of substation and transmission line faults, to demonstrate the framework’s applicability, efficiency, and generalization capabilities. High computational efficiency is enjoyed by the proposed hybrid approach in terms of computational effort required and quality of diagnosis performance over classical training methods. In addition, superior and reliable fault diagnosis performance with faster response time is achieved over state-of-the-art pattern recognition methods based on artificial neural networks (ANN) and decision trees (DT).

Suggested Citation

  • Ajagekar, Akshay & You, Fengqi, 2021. "Quantum computing based hybrid deep learning for fault diagnosis in electrical power systems," Applied Energy, Elsevier, vol. 303(C).
  • Handle: RePEc:eee:appene:v:303:y:2021:i:c:s030626192100996x
    DOI: 10.1016/j.apenergy.2021.117628
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192100996X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.117628?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Yang & Liu, Peng & Wang, Zhenpo & Zhang, Lei & Hong, Jichao, 2017. "Fault and defect diagnosis of battery for electric vehicles based on big data analysis methods," Applied Energy, Elsevier, vol. 207(C), pages 354-362.
    2. Jacob Biamonte & Peter Wittek & Nicola Pancotti & Patrick Rebentrost & Nathan Wiebe & Seth Lloyd, 2017. "Quantum machine learning," Nature, Nature, vol. 549(7671), pages 195-202, September.
    3. Wang, Chun & Yang, Ruixin & Yu, Quanqing, 2019. "Wavelet transform based energy management strategies for plug-in hybrid electric vehicles considering temperature uncertainty," Applied Energy, Elsevier, vol. 256(C).
    4. Liang, Jinping & Zhang, Ke & Al-Durra, Ahmed & Zhou, Daming, 2020. "A novel fault diagnostic method in power converters for wind power generation system," Applied Energy, Elsevier, vol. 266(C).
    5. Jin, Tao & Liu, Siyi & Flesch, Rodolfo C.C. & Su, Wencong, 2017. "A method for the identification of low frequency oscillation modes in power systems subjected to noise," Applied Energy, Elsevier, vol. 206(C), pages 1379-1392.
    6. Li, Zhongliang & Outbib, Rachid & Giurgea, Stefan & Hissel, Daniel & Jemei, Samir & Giraud, Alain & Rosini, Sebastien, 2016. "Online implementation of SVM based fault diagnosis strategy for PEMFC systems," Applied Energy, Elsevier, vol. 164(C), pages 284-293.
    7. Tamilselvan, Prasanna & Wang, Pingfeng, 2013. "Failure diagnosis using deep belief learning based health state classification," Reliability Engineering and System Safety, Elsevier, vol. 115(C), pages 124-135.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ajagekar, Akshay & You, Fengqi, 2022. "Quantum computing and quantum artificial intelligence for renewable and sustainable energy: A emerging prospect towards climate neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    2. Rosch-Grace, Dominic & Straub, Jeremy, 2022. "Analysis of the likelihood of quantum computing proliferation," Technology in Society, Elsevier, vol. 68(C).
    3. Zixia Yuan & Guojiang Xiong & Xiaofan Fu, 2022. "Artificial Neural Network for Fault Diagnosis of Solar Photovoltaic Systems: A Survey," Energies, MDPI, vol. 15(22), pages 1-18, November.
    4. Alexandru-Gabriel Tudorache, 2023. "Graph Generation for Quantum States Using Qiskit and Its Application for Quantum Neural Networks," Mathematics, MDPI, vol. 11(6), pages 1-15, March.
    5. Fu, Wei & Xie, Haipeng & Zhu, Hao & Wang, Hefeng & Jiang, Lizhou & Chen, Chen & Bie, Zhaohong, 2023. "Coordinated post-disaster restoration for resilient urban distribution systems: A hybrid quantum-classical approach," Energy, Elsevier, vol. 284(C).
    6. Marcel Hallmann & Robert Pietracho & Przemyslaw Komarnicki, 2024. "Comparison of Artificial Intelligence and Machine Learning Methods Used in Electric Power System Operation," Energies, MDPI, vol. 17(11), pages 1-25, June.
    7. Ajagekar, Akshay & You, Fengqi, 2024. "Variational quantum circuit based demand response in buildings leveraging a hybrid quantum-classical strategy," Applied Energy, Elsevier, vol. 364(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Jiang & Ou, Guiyan & Liu, Xiaohui & Dong, Ke, 2022. "How does academic education background affect top researchers’ performance? Evidence from the field of artificial intelligence," Journal of Informetrics, Elsevier, vol. 16(2).
    2. Gao, Q.W. & Liu, W.Y. & Tang, B.P. & Li, G.J., 2018. "A novel wind turbine fault diagnosis method based on intergral extension load mean decomposition multiscale entropy and least squares support vector machine," Renewable Energy, Elsevier, vol. 116(PA), pages 169-175.
    3. Zhao, Yang & Jiang, Ziyue & Chen, Xinyu & Liu, Peng & Peng, Tianduo & Shu, Zhan, 2023. "Toward environmental sustainability: data-driven analysis of energy use patterns and load profiles for urban electric vehicle fleets," Energy, Elsevier, vol. 285(C).
    4. Yu, Quanqing & Dai, Lei & Xiong, Rui & Chen, Zeyu & Zhang, Xin & Shen, Weixiang, 2022. "Current sensor fault diagnosis method based on an improved equivalent circuit battery model," Applied Energy, Elsevier, vol. 310(C).
    5. Chuang Wang & Pingyu Jiang, 2019. "Deep neural networks based order completion time prediction by using real-time job shop RFID data," Journal of Intelligent Manufacturing, Springer, vol. 30(3), pages 1303-1318, March.
    6. Hui Zhang & Cunhua Pan & Yuanxin Wang & Min Xu & Fu Zhou & Xin Yang & Lou Zhu & Chao Zhao & Yangfan Song & Hongwei Chen, 2022. "Fault Diagnosis of Coal Mill Based on Kernel Extreme Learning Machine with Variational Model Feature Extraction," Energies, MDPI, vol. 15(15), pages 1-14, July.
    7. Liu, Qiquan & Ma, Jian & Zhao, Xuan & Zhang, Kai & Meng, Dean, 2023. "Online diagnosis and prediction of power battery voltage comprehensive faults for electric vehicles based on multi-parameter characterization and improved K-means method," Energy, Elsevier, vol. 283(C).
    8. Li, Nianqiao & Yan, Fei & Hirota, Kaoru, 2022. "Quantum data visualization: A quantum computing framework for enhancing visual analysis of data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 599(C).
    9. Ma, Mina & Wang, Yu & Duan, Qiangling & Wu, Tangqin & Sun, Jinhua & Wang, Qingsong, 2018. "Fault detection of the connection of lithium-ion power batteries in series for electric vehicles based on statistical analysis," Energy, Elsevier, vol. 164(C), pages 745-756.
    10. Li, Da & Zhang, Zhaosheng & Zhou, Litao & Liu, Peng & Wang, Zhenpo & Deng, Junjun, 2022. "Multi-time-step and multi-parameter prediction for real-world proton exchange membrane fuel cell vehicles (PEMFCVs) toward fault prognosis and energy consumption prediction," Applied Energy, Elsevier, vol. 325(C).
    11. Stefenon, Stefano Frizzo & Seman, Laio Oriel & Aquino, Luiza Scapinello & Coelho, Leandro dos Santos, 2023. "Wavelet-Seq2Seq-LSTM with attention for time series forecasting of level of dams in hydroelectric power plants," Energy, Elsevier, vol. 274(C).
    12. Qiao, Dongdong & Wei, Xuezhe & Fan, Wenjun & Jiang, Bo & Lai, Xin & Zheng, Yuejiu & Tang, Xiaolin & Dai, Haifeng, 2022. "Toward safe carbon–neutral transportation: Battery internal short circuit diagnosis based on cloud data for electric vehicles," Applied Energy, Elsevier, vol. 317(C).
    13. Wang, Sen & Qin, Chaoxu & Feng, Qihong & Javadpour, Farzam & Rui, Zhenhua, 2021. "A framework for predicting the production performance of unconventional resources using deep learning," Applied Energy, Elsevier, vol. 295(C).
    14. Xiong, Rui & Sun, Wanzhou & Yu, Quanqing & Sun, Fengchun, 2020. "Research progress, challenges and prospects of fault diagnosis on battery system of electric vehicles," Applied Energy, Elsevier, vol. 279(C).
    15. Fan Zhang & Xiao Zheng & Zixuan Xing & Minghu Wu, 2024. "Fault Diagnosis Method for Lithium-Ion Power Battery Incorporating Multidimensional Fault Features," Energies, MDPI, vol. 17(7), pages 1-21, March.
    16. Su, Hongzhi & Wang, Chengshan & Li, Peng & Li, Peng & Liu, Zhelin & Wu, Jianzhong, 2019. "Novel voltage-to-power sensitivity estimation for phasor measurement unit-unobservable distribution networks based on network equivalent," Applied Energy, Elsevier, vol. 250(C), pages 302-312.
    17. Vicente Moret-Bonillo & Samuel Magaz-Romero & Eduardo Mosqueira-Rey, 2022. "Quantum Computing for Dealing with Inaccurate Knowledge Related to the Certainty Factors Model," Mathematics, MDPI, vol. 10(2), pages 1-21, January.
    18. Tang, Xiaopeng & Gao, Furong & Zou, Changfu & Yao, Ke & Hu, Wengui & Wik, Torsten, 2019. "Load-responsive model switching estimation for state of charge of lithium-ion batteries," Applied Energy, Elsevier, vol. 238(C), pages 423-434.
    19. Ping, Zuowei & Li, Xiuting & He, Wei & Yang, Tao & Yuan, Ye, 2020. "Sparse learning of network-reduced models for locating low frequency oscillations in power systems," Applied Energy, Elsevier, vol. 262(C).
    20. Sánchez, Marcelino & Delprat, Sébastien & Hofman, Theo, 2020. "Energy management of hybrid vehicles with state constraints: A penalty and implicit Hamiltonian minimization approach," Applied Energy, Elsevier, vol. 260(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:303:y:2021:i:c:s030626192100996x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.